

Reconciling the Sunspot and Group Numbers

Frédéric Clette Laure Lefèvre

World Data Center SILSO Royal Observatory of Belgium, Brussels

Multi-century solar activity reference

Two sunspot number time series

Sunspot Number

 $S_N = 10 Ng + Ns$

- Measure of the number of active regions + their size
- Origin: R. Wolf (1849)
- Time interval: 1700 now
- Production:
 - 1700-1849: reconstruction from historical documents
 - **1849-1980**: Zurich Observatory
 - 1981-now: World Data Center SILSO, Brussels
- Calibration: pilot station
 - Zurich Observatory (successive primary observers)
 - Specola Observatory Locarno (since 1981)

Sunspot group number

G_N= 20.13 Ng

- More basic but applicable to cruder early observations
- Origin: Hoyt and Schatten (1998)
- Time interval: 1610-1995
- Production:
 - Single recent reconstruction
 - Based on an extended set of raw historical data
- Calibration:
 - "Daisy-chaining" of observers backwards in time
 - Starting reference: Royal Greenwich Observatory photographic catalog (1875-1975)

- Very good match after 1900
- Large disagreements before the 20th century: G_N lower than S_N by up to 40%

A new impulse: Sunspot Number Workshops

NSO, Sac Peak, USA, Sept. 2011

- Community effort started in Sept. 2011:
 - 4 Sunspot Number Workshops:
 - > 40 participants
- ISSI Team Meetings 2018-2019 (www.issibern.ch/teams/sunspotnoser/):
 - Chairs M.Owens, F.Clette

Synthesis in:

- Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: Space Sci. Rev. 186, 35-103, 2014
- Solar Physics: Topical Issue on « Recalibration of the Sunspot Number», Volume 291 9-10, 2016, Eds. Clette, Cliver, Lefèvre, Vaquero, Svalgaard, 35 articles

Sunspot Number S_N version 2 (released July 2015)

"Backbone" Group Number G_N (Svalgaard & Schatten, 2016)

Two unrelated set of corrections

Sunspot Number

Type of flaws:

- Inaccuracies in the k scaling coefficients vs the pilot observer

Sunspot group number

- Type of flaws:
 - **Inhomogeneities in the** photographic catalog after 187
- Ver las ver la

 - data
- The problems have different causes and occur at different times
- The required correction methods and data were different and unrelated

Sample corrections for S_N and G_N

[S_N] The Waldmeier jump : probable cause

- Sunspot weighting: •
 - Large spots are counted >1 (up to 5)
 - Introduced for Zurich assistants in the late 19th century (Friedli 2016)
 - Systematic application by the primary observer since 1926
- Locarno auxiliary station trained to ۲ the method (1955): still in use !
 - Blind test (2008 2014): comparison of simultaneous standard and weighted counts (Clette & Lefèvre 2016, Svalgaard 2017):
 - Variable inflation factor
 - Constant at high activity: 1.177 ± 0.005

→ Matches the amplitude of the 1947 jump

1.05

50

150

Ri/0.6

G_N : criticisms and new results

- Original G_N series (Hoyt & Schatten 1998): daisy-chaining of k ratios between observer pairs
 - Backwards propagation of errors

G_N : criticisms and new results

• 40% upward drift attributable to the use of photographic data after 1875 (Royal Greenwich Observatory catalogue)

Cliver & Ling 2016, Cliver 2017

VARSITI General Assembly, Sofia, Bulgaria

[G_N] An alternate approach: active-days fraction

- Statistics of spotless days versus days with one group of spots or more = active days (Usoskin et al. 2016)
- Model hypothesis: differences in groups counts due to acuity of observers
- Construction of a standard "perfect" observer: RGO catalogue (1900-1975)
 - Acuity = groups eliminated below a lower threshold in sunspot area (S_S)
 - Matching the cumulative distribution function (cdf) of the number of active days/month (ADF) for the observer

 \implies Resulting series: similar to the original Hoyt & Schatten G_N

(low in 19th century)

$[\mathbf{G}_{\mathsf{N}}]$ Limits and failures of the ADF

- Observer sampling can be varying with solar activity:
 Strong positive bias on ADF (underestimate of G_N) Willamo et al. (2018)
- The method works only when ADF is below 80%:
 - Activity is below 5-6 groups
 (< 50% of peak of solar cycle)
 - Derived scale is extrapolated for high activities (cycle maxima)
- Base assumption does not consider differences in group splitting between observers:
 - Important factor near cycle maxima

Only 1 reported group

Post-correction assessment

Impact: new secular trends

- Original series: strong upward secular trend over last 200 years ("Modern maximum", Solanki et al. 2004, Usoskin 2013):
 GN: + 40% / century (red) SN : + 15% / century (green)
- New S_N and G_N are similar and have a weak upward trend
 < 5 %/century

External validation: geomagnetic record

- Comparison with the geomagnetic record: solar open magnetic flux B reconstructions
- Latest joint re-calibration (ISSI workshops) (Owens et al. 2016)
- No trend between cycle maxima of mid-19th century and mid-20th century
 Best match with S_N version 2.0

$S_{\rm N}$ and $G_{\rm N}$ remain distinct indices

- Different measurements of emerging toroidal magnetic flux
- Ratio between S_N and G_N values for the re-calibrated SN V2 series over 1945-2015 (Clette & Lefèvre 2016):
- Single non-linear relation valid for multiple cycles
- Consequence of the varying contribution of large and small sunspot groups (Tlatov 2013, Georgieva et al. 2017)

Building a full sunspot database

Key action: S_N observation database

- Next S_N version (V3): Recalculation from all available raw source data
- Recovery of personal logbooks, printed tables, drawings

Key action: S_N observation database

- **Recovering all raw input data from Zurich** (internal + auxiliary stations) (Astronomische Mittheilungen der Sternwarte Zurich):
 - Now encoded up to 1945 (WDC-SILSO)
 - Not all data published after 1919 (external stations missing)
 - No data published after 1945

Original sourcebooks recovered at the Specola Observatory (Locarno) in June 2018: all source data between 1945 and 1970

Remaining issues and next goals

Sunspot Number

- Status:
 - The main corrections are included in Version 2
 - Consensus on the amplitude of the Waldmeier jump correction
- Remaining improvements:
 - Modern period (1849-today)
 - Mostly small local deviations: < 10%, less then 1 solar cycle
 - Early period (18th and early 19th century):
 - Lower accuracy and sparse data
- Ongoing database construction

Recovery of lost Zurich sourcebooks

Full end-to-end reconstruction from all original data

Sunspot group Number

- Status:
 - Consensus on flaws in the original H & S series
 - Several incompatible reconstructions
 - Flaws identified in all new methods
- Ongoing method evaluation:
 - Common new G_N database (Vaquero et al. 2016)
 - Coordinated testing of methods:
 - Joint work: ISSI workshops
 - Focused topical working groups
- Goal:
 - Consensus for each separate issue
 - Single optimal reconstruction

Combination of different methods: Best method for each problem and epoch

Conclusions

The study of the past sunspot record is completely revived

• S_N and G_N were and will be calibrated independently

The S_N and G_N time series are now evolving data sets!

Stay tuned

Home

Data

international sunspot number

Products

Analyses

World Data Center for the production, preservation and dissemination of the

World Data Center – SILSO Sunspot Index and Long-term Solar Observations

Sumport Index and Longterm Solar Observations

Menu

- + Home
- + Data
- Products
- Analyses
- + FAQ & News
- Observers
- Contact
- Legal notices

9

Sunspot number series; latest update

FAQ & NEWS

Observers

Contact

atest Sunspot Bulletin

Daily estimated sunspot

number

Major change of data set on July 1st, 2015: key information

New prediction method

Starting from a collaboration with the NCEI (NOAA, Boulder USA), we Lake implemented new 12-month ahead predictions based on the McNish and Lincoln method. This rather simple method is based on a single mean cycle profile and is thus of "climatology" type. It was used as a standard for many years at NOAA, and we now add it to our other more advanced Standard Curves and Combined methods, allowing direct comparisons, Likewise, we now also provide a Kalmanliker optimized version of these new ML predictions.

18.55 original field that bendani Board (Bearrature of Bidgings, 1999) February

http://sidc.be/silso

Kalman-filter optimization of the 12-month ahead predictions

McNish&Lincoln method (ML)

14/6/2019

VARSITI General Assembly, Sofia, Bulgaria

G_N: new database and Maunder minimum

 Full revision of the original G_N raw data archive (Vaquero et al. 2016)

Many null values unduly interpolated by Hoyt & Schatten (1998)

Higher activity levels in Maunder minimum: a weak solar cycle persists (South hemisphere)

GN « Original », Hoyt & Schatten 1998 GN « Backbone », Svalgaard & Schatten 2016 GN Vaquero et al. 2015 A&Ap ML « Loose » model MO: « Optimum » model MS « Strict » model

S_N criticisms: narrowing in on a common value

14/6/2019

[S_N] Zurich observers

(Plot based on the Mitteilungen der Eidgenösisches Sternwarte Zürich) VARSITI General Assembly, Sofia, Bulgaria

[S_N] Long-duration stations (> 1 solar cycle)

(Plot based on the Mitteilungen der Eidgenösisches Sternwarte Zürich) VARSITI General Assembly, Sofia, Bulgaria 28

[G_N] Uncorrected series: a comparison

• Ratios with a non-calibrated series (raw un-normalized numbers)

- High values before 1900: $S_N V2$, backbone G_N , Cliver&Ling G_N
- Low values before 1900: original H&S G_N, ADF G_N
- Constant or rising ratio (low series) imply a constant or degrading quality of the observations
 - Inconsistent with known progresses of astronomical instruments

Non-Gaussian errors and uncertainties

- Global statistics based on the SILSO database (1981-now, > 550.000 data)
- Two components in random errors (Dudok de Wit et al. 2016):

Non-Gaussian errors and uncertainties

 Long-term variations of observer errors: decreasing dispersion in the resulting S_N
 ➡ Steady improvement of the S_N index precision

Wolf(er) Waldmeier Brussels α S_N / 25 З YEAR Dudok de Wit et al. 2016

The Wolf-Wolfer transition (1877-1893)

- Unique interval in the SN series:
 - SN number is the average between two observers (Wolf+Wolfer)
- Critical double transition:
 - From
 Wolf 40mm portable
 refractor to
 Wolfer with 82mm refractor
 - New counting rules: small spots, multiple umbrae

- k coefficient 0.6 between Wolf series (1700-1893) and modern series (1893-now)
- Trend over 1876-1883:
 - Wolfer gaining experience (counting progressively more spots)
 - Mix with other assistants (mutual influence?)
- 1883-1893 gives a correction factor of about 0.55 (< 0.6)
 - Should the Wolf series before 1876 be raised by 10%?

[G_N] Improving the backbone method

- New "backbone" reconstruction (Chatzistergos et al. 2017):
 - More backbone observers: directly overlapping
 - Use of daily values instead of yearly mean values
- Non-parametric scaling between observers :

correspondence matrices

- Cross-observer probability distribution functions
- Provides the means and dispersion of the estimated corrected value (panel b)

Intermediate scale in 19th century:

- Lower than original backbone G_N
- Higher than ADF G_N

14/6/2019

[G_N] Towards a solution ?

- Correspondence matrices: nice non-parametric tool
- Very few data points at moderate and high GN values:

Lower slopes (k factors) or nonlinearity of fits are barely significant

Best approach:

combination of classical k-ratios and correspondence matrices

Future big challenge: continuity in early data

- Optimal choice of the reference- observer chain (A. Muñoz-Jaramillo 2018): linking best observer pairs
 - Recovering new "forgotten" observations: e.g. East Asia (Hayakawa et al. 2019)
 - Advanced data-mining methods for sparse time series
 - Exploitation of detailed information in sunspot drawings
 - Use of geomagnetic indices to bridge short gaps to link "loose ends"

14/6/2019

Dudok de Wit et al. 2017 35

Wolf's historical observers: timeline

Two distinct base data sets

Sunspot Number

- Reference data sets:
 - Zurich observers and auxiliary stations before 1980
 - SILSO database
 - 280 stations
 - > 550,000 numbers
 - + a few new recovered time series (1950-2015)
 - Archived reports to Zurich

Sunspot group number

- Reference data sets:
 - Original Hoyt & Schatten group number database (1610-1995)
 - Extension with new observations:
 - 20th century (Wolfer, Koyama, Luft, etc.)
 - SILSO database (1980-2014)
 - Corrections and extension of early historical data, including the Maunder Minimum
 - Vaquero et al. 2016

[G_N] Towards a solution ?

 A compromise between old stitching methods and correspondence matrices

