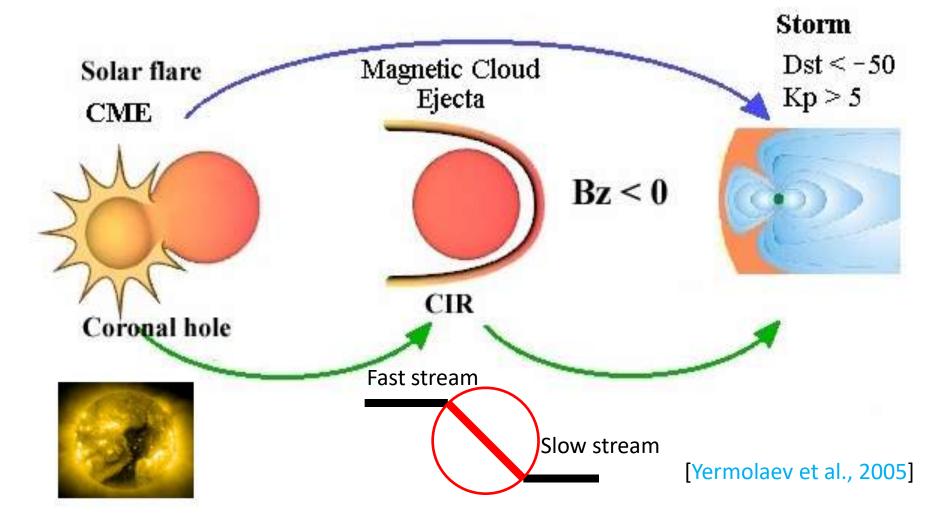
Properties of interplanetary drivers of magnetospheric disturbances

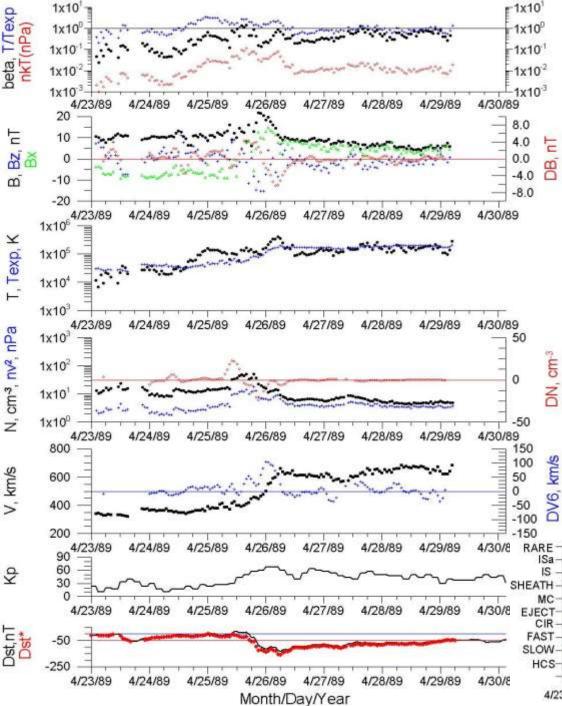
<u>Yu.I. Yermolaev</u>, I. G. Lodkina, M. Yu. Yermolaev, N.L. Borodkova and M. O. Riazantseva

Space Research Institute (IKI - **K**), RAS, Moscow, Russia

Several results have been published and may be found in http://www.iki.rssi.ru/people/yyermol_inf.html yermol@iki.rssi.ru

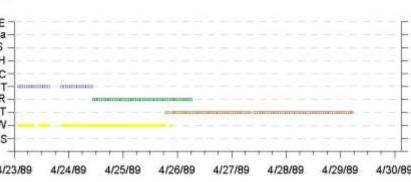


VarSITI Closing Symposium June 10÷14, 2019, Sofia, Bulgaria


Introduction

- Interplanetary source of magnetic storms is southward IMF (Bz <0) component (*Russell et al.,* 1974, Burton et al., 1975; Akasofu, 1981)
- Non-disturbed solar wind contains IMF which lies in ecliptic plane => Bz =0 !
- Only disturbed types of solar wind may be geoeffective.
- 2 scenarios of generation of Bz < 0 component:
- 1) CME => MC/Ejecta + Sheath => Bz<0 => Storm
- 2) Coronal hole => CIR => Bz <0 => Storm

General concept of storm effectiveness of solar and interplanetary events

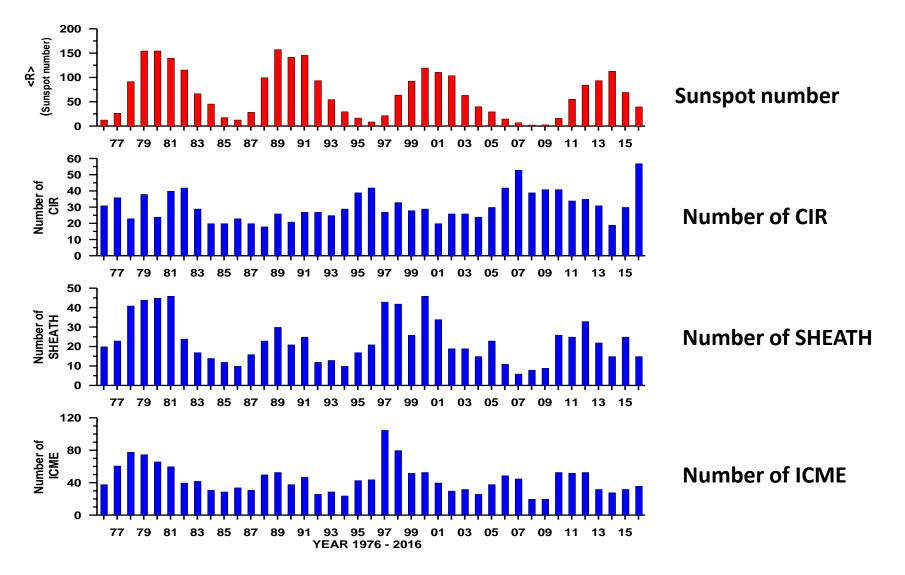


Catalog of solar wind phenomena 1976-2017

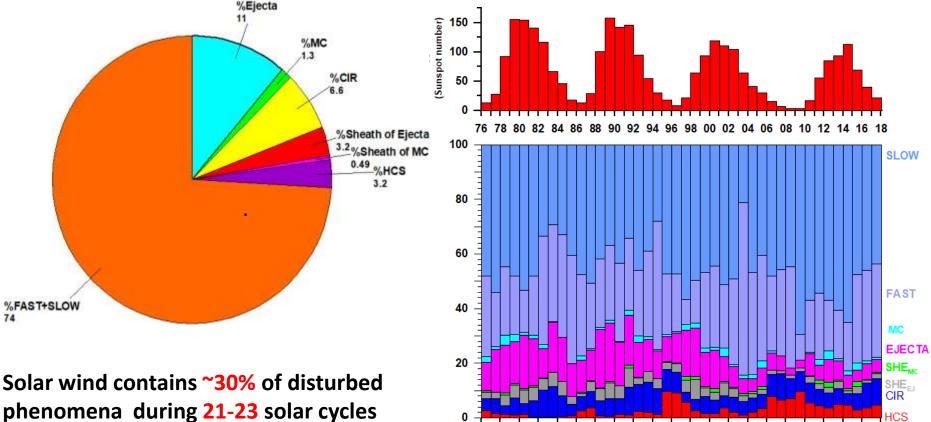
(Yermolaev et al., 2009)

Example of OMNI data and calculated parameters in our database <u>ftp://ftp.iki.rssi.ru/pub/omni</u> (← left)

and identification of solar wind types ftp://ftp.iki.rssi.ru/pub/omni/catalog/ (↓ bottom)



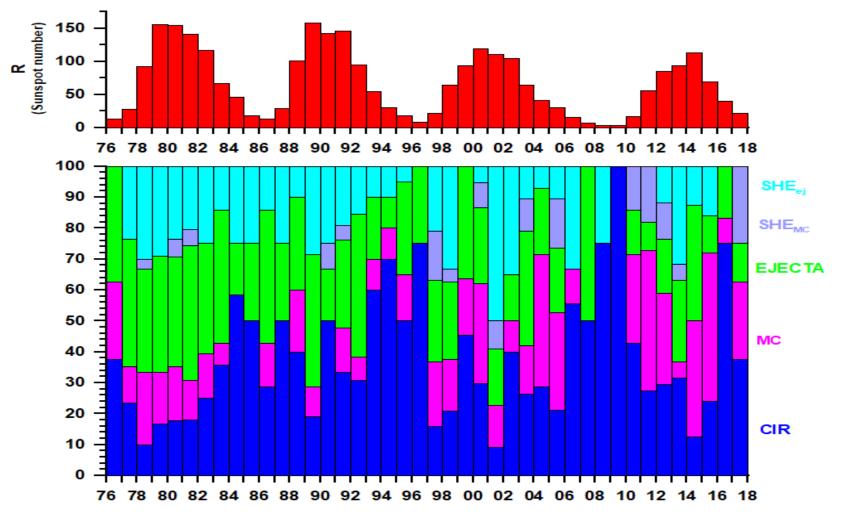
List of solar wind events


1		· .	~	1	1.	and the second			-		COMPANY.	Charles and the second								1172			0		
	÷ č)	ŵ	0) ftp	://ttp.iki	1551.11	u/put	x/omn	/catal	09/198	3/1988int.1	txt							9	☆	煙	h	Ø	
oData	1988	1	1	1 0	1	1988	1	1	1 2	3	3														
Wslow	1988	1	1	1 3	4	1988	1	1	1 7	8	5														
S	1988	1	1	1 8	9	1988	1	1	1 8	9	1														
Wslow	1988	1		1 9	10	1988	1	1	1 19	20	11														
oData	1988	1		1 20	21	1988	2	1	2 4	29	9														
Wslow	1988	2	1	2 5	30	1988	2	1	2 5	30	1														
HE	1988	2		2 6	31	1988	2	1	2 15	40	10														
JE	1988	2	1	2 16	41	1988	3		3 8	57	17														
vslow	1988	3	1	3 9	58	1988	4		4 1	74	17														
oData	1988	4	1	4 2	75	1988	4		4 10	83	9														
vslow	1988	4	1	4 11	84	1988	4	1	4 16	89	6														
S	1988	4	1	4 17	90	1988	4	1	4 17	90	1														
IR	1988	4	1	4 18	91	1988	5	1	5 1	98	8														
oData	1988	5	1	5 2	99	1988	5	1	5 13	110	12														
Vfast	1988	5	1	5 14	111	1988	5	1	5 15	112	2														
Data	1988	5	1	5 16	113	1988	5	1	5 23	120	8														
slow	1988	6		6 0	121	1988	6	1	6 3	124	4														
Data	1988	6	1	6 4	125	1988	11	11	1 14	255	131														
Wslow		11		1 15	256	1988	11	11	1 22	263	8														
HE	1988	11	11	1 23	264	1988	12	11	2 21	286	23														
)E	1988	12	1 1	2 22	287	1988	13	11	3 22	311	25														
ΗE	1988	13	11	3 23	312	1988	14	11	4 5	318	7														
0	1988	14	11	4 6	319	1988	15	11	5 9	346	28														
Wfast	1988	15	1 1	5 10	347	1988	16	11		363	17														
Data	1988	16	1 1	6 3	364	1988	17	1 1	7 13	398	35														
vslow	1988	17	1 1	7 14	399	1988	18	11	.8 4	413	15														
oData	1988	18	11	8 5	414	1988	24	1 2	4 9	562	149														
Wslow	1988	24	1 2	4 10	563	1988	24	1 3	4 11	564	2														
oData	1988	24	1 2	4 12	565	1988	24	1 3	4 23	576	12														
JE	1988	25	1 2	5 0	577	1988	25	1 2	5 23	600	24														
wslow	1988	26	1 2	6 0	601	1988	26	1 2	6 18	619	19														
CS .	1988	26	1 2	6 19	620	1988	26	1 3	6 21	622	3														
vslow	1988	26		6 22	623		27		7 12	637	15														
Sa	1988	27		7 13	638		27		7 13	638	1														
vslow	1988	27		7 14	639	1988	27		7 23	648	10														
cs	1988	28	1 2		649		28	1 2		651	3														
vslow	1988	28	1 2		652		28	1 2		658	7														
Sa						1988			8 10	659	1														

12.06.2019

Yearly number of different types of solar wind phenomena (1976-2016)

Distribution of durations of different types of solar wind during 1976-2017

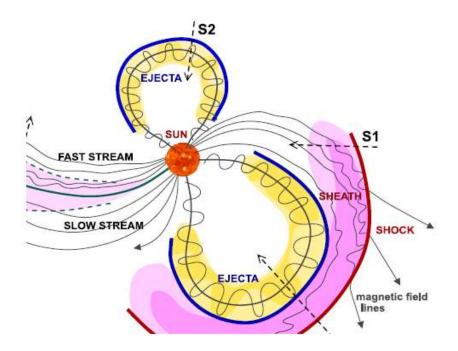

76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18

Years

and only ~20% during 24 solar cycle.

74

Distributions of interplanetary sources of magnetic storms (Dst<-50 nT)

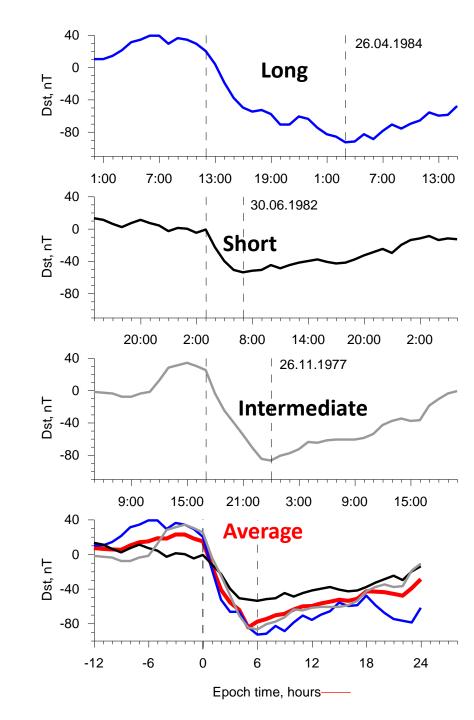

Years

Methods

Sequences of SW types and interaction between them

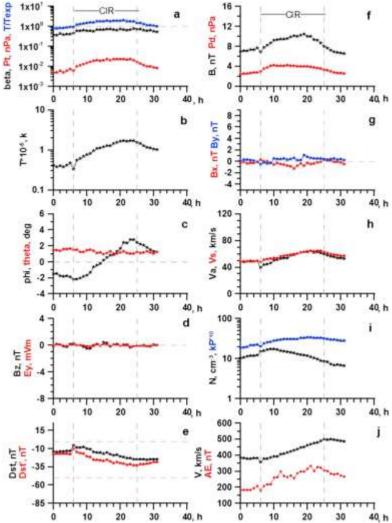
- We separately analyze the following sequences of the phenomena (Yermolaev et al., JGR, 2015):
- (1) SW/CIR/SW,
- (2) SW/IS/CIR/SW,
- (3) SW/Ejecta/SW,
- (4) SW/Sheath/Ejecta/SW,
- (5) SW/IS/Sheath/Ejecta/SW,
- (6) SW/MC/SW,
- (7) SW/Sheath/MC/SW, and
- (8) SW/IS/Sheath/MC/SW

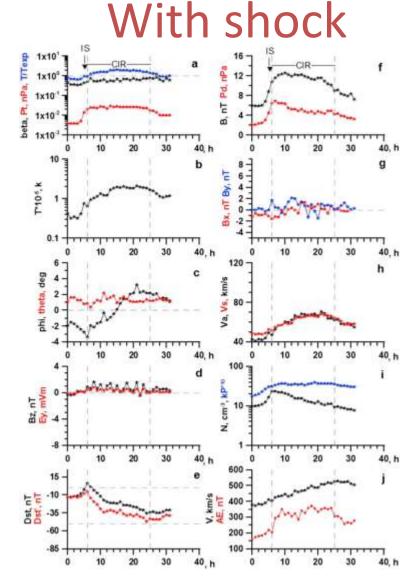
Sequences #4 and #6 contain <u>Sheath</u> but do not contain <u>IS</u>



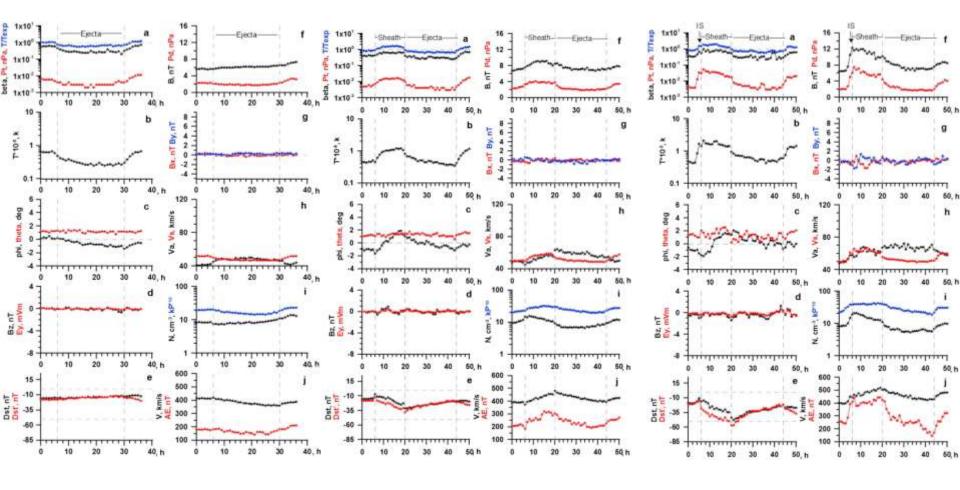
Several cases are shown in Figure from Kilpua et al., 2015

Method of double superposed epoch analysis


 To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide.

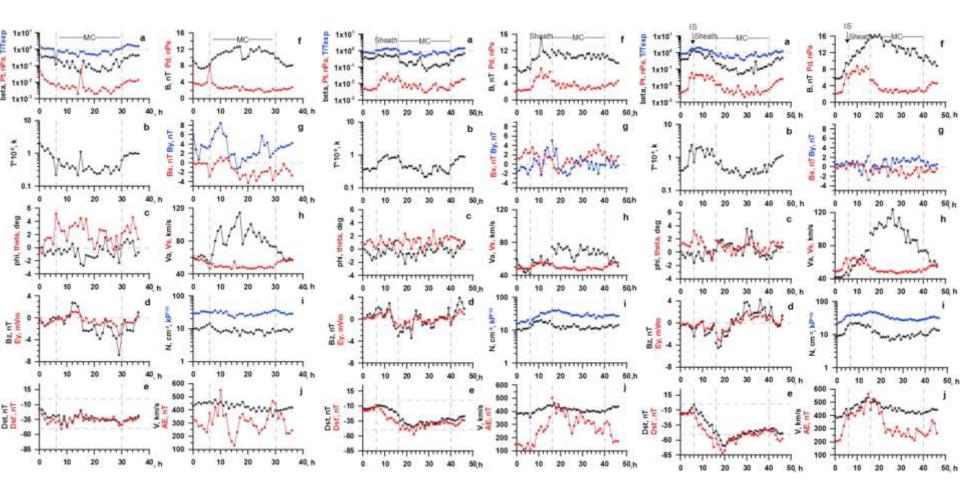

Yermolaev et al., AnnGeoPhys. 2010

CIR



Yermolaev et al., JGR, 2015

Ejecta

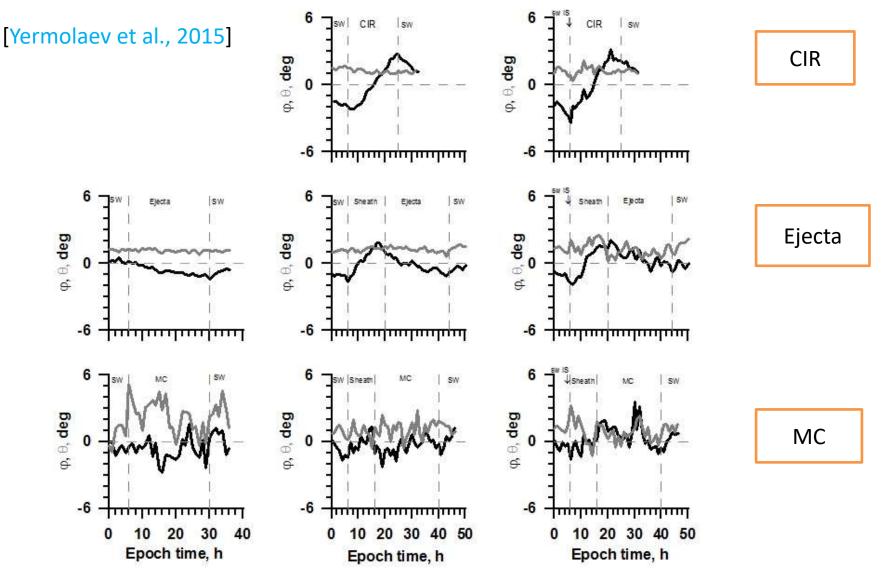


Ejecta

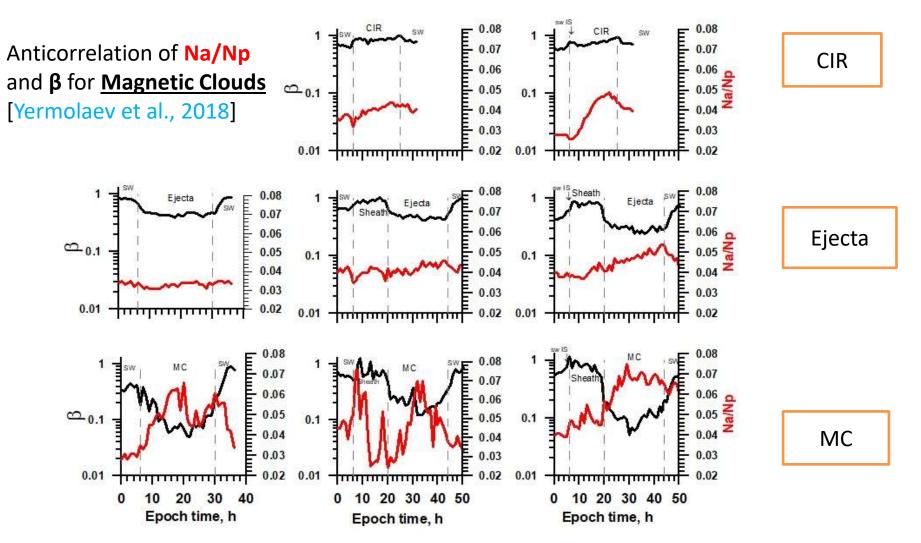
Sheath + Ejecta IS + Sheath + Ejecta

Yermolaev et al., JGR, 2015

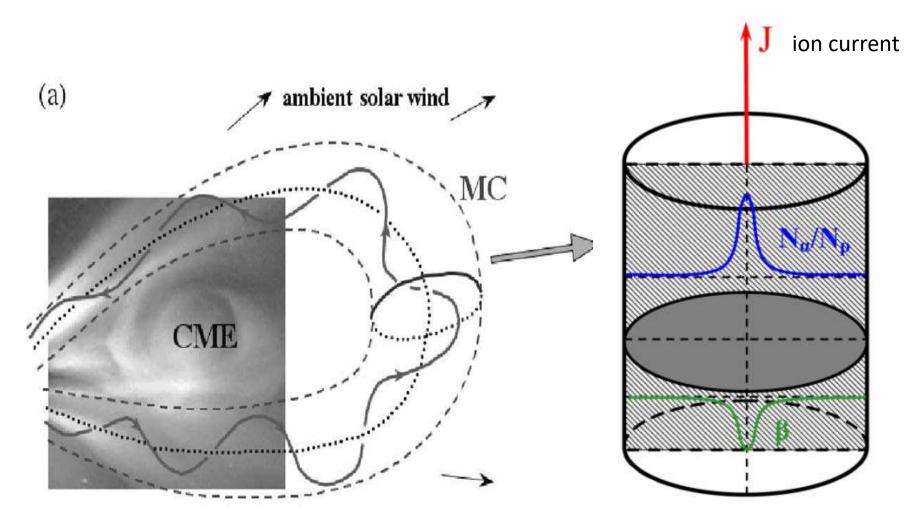
Magnetic Cloud



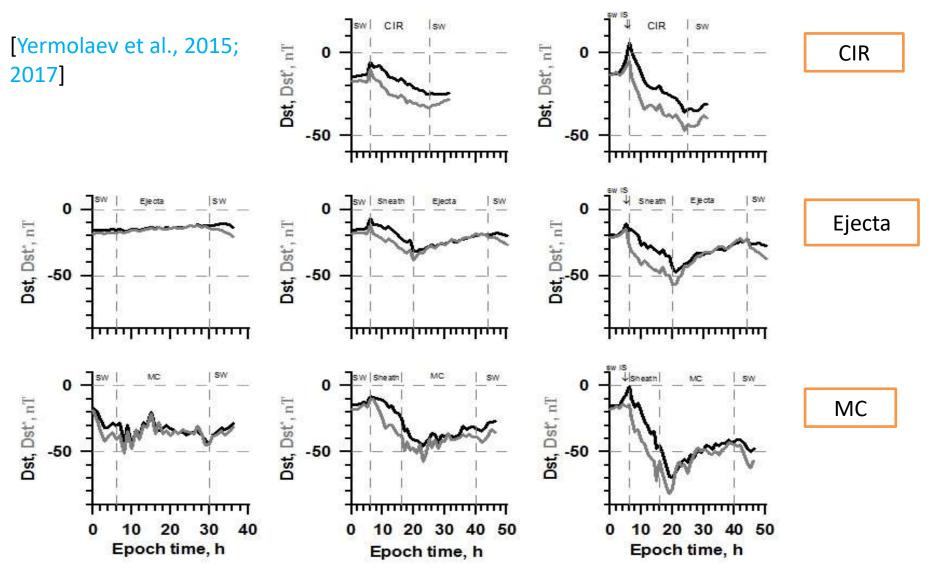
MC


Sheath + MC IS + Sheath + MC

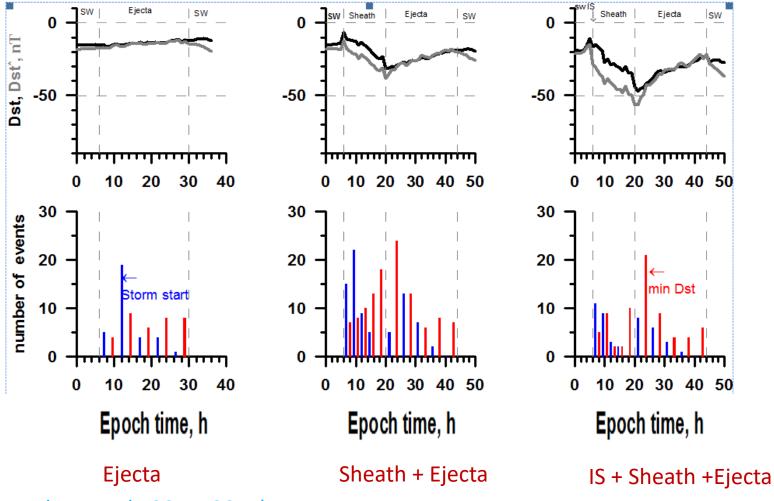
Yermolaev et al., JGR, 2015


Average behavior of longitude φ (black) and latitude ϑ (gray) bulk velocity angles

Average behavior of β-parameter (black) and helium abundance Na/Np (red)

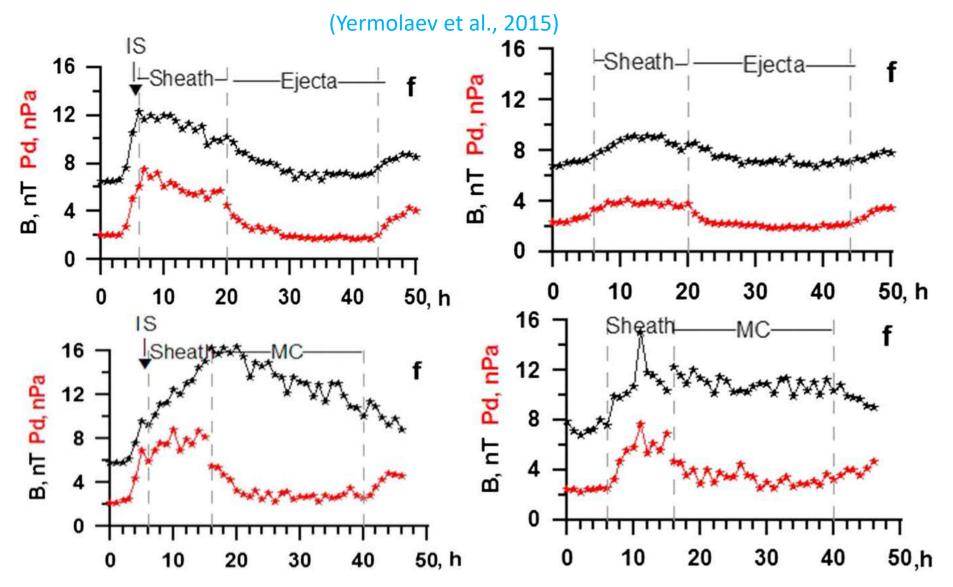


Nα/Np and β spatial distributions in the MC section

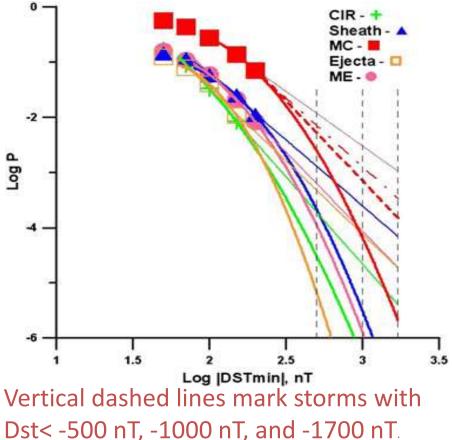


High helium contribution in ion current in MC [Yermolaev et al., 2018]

Average behavior of Dst (black) and Dst*(gray) indices



Average behavior of Dst and Dst* indices and time distributions of storm start and min Dst



(Yermolaev et al., 2015; 2017)

Average magnetic field in Sheath is higher than in Ejecta and close to MC

Approximations of the integral probability P(|Dst| > Dst0) dependence of storm occurrence with Dst<Dstmin for different types of solar wind.

The lowest limits of waiting times for extreme magnetic storms $T_{MC}(Dst_min < -500 nT) \sim 20$ years, $T_{MC}(-1000 nT) \sim 120$ years, and $T_{MC}(-1700 nT) \sim 500$ years (with accuracy of factors ~ 1.5, ~ 2, and ~ 3), respectively. [Yermolaev et al., 2013; 2017]

Conclusions

Statistic study of solar and interplanetary data allow us to conclude:

- Main interplanetary sources of storms are CIRs, Sheaths and ICMEs (MC and Ejecta).
- Part of disturbed SW phenomena changed from ~30% in 21-23 solar cycles to ~20% in 24 cycle.
- The longitude speed angle Ø in ICME changes from 2 to −2 o while in CIR and Sheath it changes from −2 to 2 o, i.e., the streams in CIR/Sheath and ICME deflect in the opposite side.
- MCs have maximal Nα/Np and minimal β-parameter (maximal IMF magnitude, B) in the center of them (Yermolaev et al.,2018). This supports theoretical and experimental findings that heavy ions can play important role in the development of current structures in various space plasmas (Kistler et al.,2005; Zelenyi et al.,2006; Grigorenko et al.,2017)
- So-called strong "CME-induced" storms are results of complex phenomena including two geoeffective parts: Sheath and ICME [Yermolaev et al., 2015; 2017].
- Majority of extreme storms are generated by interacting Sheath/ICME structures
 [Eselevich & Fainshtein, 1993; Wang et al., 2003; Veselovsky et al., 2004; Farrugia et al., 2006; Yermolaev & Yermolaev, 2008; Benacquista et al., 2016 ...].
- Extreme storms with Dst < -1700 nT (Carrington-like storms) can be generated on the Earth with frequency not higher than one event during ~ 500 years with accuracy of this factor ~ 3. [Yermolaev et al., 2013; 2017].