Solar Flare Effects on the Thermosphere and Ionosphere

Liying Qian High Altitude Observatory, National Center for Atmospheric Research

SI

June 10-14, 2019

Introduction

- Solar flares are sudden increased brightness from the Sun's active regions;
- Solar flares cause rapid increase (within minutes) of solar irradiance, especially in soft X-ray (0.1 10 nm) and EUV (10 121.6 nm).
- Their radiation only take eight minutes to arrive at Earth;
- The largest flare on record is an X28 flare that occurred on November 4th, 2003 (GOES);
- Ionosphere: Sudden Ionospheric Disturbances (SID)
 - affect HF radio communication, GPS navigation systems
- Thermosphere: rapid increase of neutral density
 - affect on satellite drag

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Model and Data

Models

- NCAR TIME-GCM
 - Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model
 - ➤ ~ 30 600 km
 - \blacktriangleright 2.5° x 2.5°, $\frac{1}{4}$ scale height

FISM

- Flare Irradiance Spectral Model
- ➢ GOES X-ray, TIME/SEE, SORCE, UARS/SOLSTICE
- ➤ 0.1 190nm, 1nm spectral resolution
- Daily (1-day temporal resolution): 1947 present
- Flare (1 minute temporal resolution): 1982 present

Data

- Swarm neutral density data
- GPS TEC (Total Electron Content) data
- ISR (incoherent Scatter Radar) electron density data

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Time Series of Flare Responses to an X10 Flare

UCAR Observatory

TEC Response to an X17 Flare Occurred on October 28, 2003

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Altitude Dependency of Flare Responses to an X17 Flare Occurred on October 28, 2003

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Solar Zenith Angle Dependency of Flare Responses to the X10 Flare on January 20, 2004

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Vertical E x B drift Response to an X8.2 Flare Occurred on September 10, 2017

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Disk Versus Limb Effect

x 10 -11

(mith)

8.0

0.E

Density

X17, 2003/10/28 11:12

SOHO EIT

CHAMP Neutral Density

X28, 2003/11/04 19:48

Disk Versus Limb Effect

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

Dependency on Flare Total Variability Energy

Dependency on Flare Total Variability Energy -- Thermosphere

- Solar flare responses in the TI system
 - Magnitudes and temporal scales
 - Altitude dependency
 - Solar zenith angle dependency
 - Effects on electrodynamics
- How flare characteristics affect the responses
 - Flare location effect
 - Flare total variability energy
- Flare response and TAD (Traveling Atmospheric Disturbance) occurrence during the active period of September 2017

The Active Period of September 6th – 11th, 2017

AR2673 was responsible for 27 M-class flares, 4 X-class flares, and 2 storms. The two strongest flares of solar cycle 24: X9.3 flare on 09/06, X8.2 flare on 09/10.

E-Region Electron Density Response

TEC Response to the X9.3 Flare

Mass Density Response -- Simulations

Mass Density Response -- Observations

Summary - 1

- E –region responds to flares immediately and recovers with flares;
- Neutral temperature response increases with altitude. For the X10 flare, neutral temperature and F-region ionosphere reach peak response about 2 hrs after the flare peak;
- Magnitudes of flare response depend on local time and latitude. For the X10 flare, at local noon and equatorial latitudes, flare responses are ~ 20-30% in the TI system;
- Thermosphere response largely follows solar zenith angle, ionosphere response deviates from solar zenith angle effects (composition, plasma transport);
- Flares decrease daytime eastward electric field, decrease E x B (~ 20% for the X8.2 flare), weaken the EIA;

Summary - 2

- Disk flares are more geoeffective, especially in the Fregion and upper thermosphere (> a factor of 2);
- Flare responses in the TI system essentially linearly depend on flare total variability energy;
- During the space weather events of September 6th 11th, 2017, large-scale TADs occurred when there were both flares and storms. The flares changes the magnitudes and propagation speeds of the TADs. There was no evidence that large-scale TADs occurred when there were only flares but no storms, indicating that flares alone are not sufficient to excite large-scale TADs.

