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Scentific Committee on Solar-Terrestrial Physics




ST@OSTEP

Scientific Committes on Solar-Terrestrial Physics

International interdisciplinary programs
in solar-terrestrial physics operated by SCOSTEP

1976-1979:
1979-1981.:
1982-1985:
1990-1997:
1998-2002:
2004-2008:
2009-2013:
2014-2018:

IMS (International Magnetosphere Study)

SMY (Solar Maximum Year)

MAP (Middle Atmosphere Program)

STEP (Solar-Terrestrial Energy Program)

Post-STEP (S-RAMP, PSMOS, EPIC, and ISCS)

CAWSES (Climate and Weather of the Sun-Earth System)
CAWSES-II (Climate and Weather of the Sun-Earth System-Il)

VarSITI (Variability of the Sun and Its Terrestrial Impact)



Solar Variability and SCOSTEP Scientific Programs

International sunspot number It,: monthly mean and 13-month smoothed number
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VarSITIl has 4 scientific projects

International Study of Earth-Affecting Solar
Transients (ISEST)/MiniMax24

How do coronal mass ejections (CMEs) and corotating Interaction regions iCIHs:I propagate
and evolve, drive shocks and accelerate energetic particles in the heliosphere?
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Role Of the Sun and the Middle
5 atmosphere/thermosphere/ionosphere
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Specification and Prediction of the
Coupled Inner-Magnetospheric
Environment (SPeCIMEN)
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o~ : : Can the state of the Earth’s inner magnetosphere be specified and
predicted to high accuracy, based on inputs from the 5un and solar wind?
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Solar Evolution and Extrema (SEE)

Solar Evolution and Extrema
SEE

------

Piet Martens,

_ / ", yendu Nandi,
V|ad‘j‘mir (Sbridko (IISER Kolkata, India)
(IZMIRAN, Russia)

(Smithsonian Astrophysical Observatory,
USA)

/

e How well do we understand how Sun works?

e Can we predict Sun’s activity? Are we entering a grand
“Maunder-type” minimum, or just a secular “Dalton-type”
minimum? Input for climate models.




Case Low Medium High High-S

(N:. No. No) (64,96,288) (64,96,288) (256,384,1152) (512,768,2304)

Turbulent Emeg  12x10°  16x10°  2430)x10°  34x10°
Mean Eqnag 2.0 x 10° 6.7 x 10° 11(27) x 10° 23x10°

Case Low

v, at r=0.95R,
Case Medium _

Case Medium

Case High

= : m/s

v, at r=0.95R, el = 4820 0/20:40 By [kG]
case High clearly includes the small-scale G20 O 04D JE BT R 4

turbulence
Hotta et al. (Science, 2016): High-resolution modeling of solar magnetic field at high
Reynolds numbers (small scale dynamo acts as large diffusivity).



Predictions of sunspot cycle 24
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Can we predict solar activity in the following cycles?

ISSI/VarSITlI Forum on future

evolution of solar activity,
2016, ISSI, Bern, Switzerland

The next two cycles will not be high, but not a beginning of a grand
Maunder type minimum.

Most likely that cycle 25 will be of the same height as cycle 24, and the
next one may be a bit lower.

There is some probability of a Dalton type minimum.

We cannot predict beyond cycle 25 or at most 26.



- Predictions of

sunspot cycle 25
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Shannon Entropy—Based
Prediction of Solar Cycle 25
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. Maximum value of the 13-month smoothed monthly total

sunspol number in each sunspot cycle (Cycle 22, 23, and 24; diamond)
and the predicted cycle amplitude in Cycle 25 (cross) as a function of the
axial dipole moment at the previous minimum predicted from the mag-
netogram observed three years before the minimum. The least-square
fit for Cycles 22, 23, and 24 that crosses the point of origin is shown
as the dashed line. The correlation coefficient for Cycles 22, 23, and 24

is 0.99.



A Tree A ¢ Decadal average of our data
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Miyvake et al. (Nature, 2012)

Super flare seems to occur in AD775 from '*C record in
tree rings.
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Steller flare observation indicate super flares can occur.



International Study of Earth-Affecting
Solar Transients ISEST/MiniMax24

International Study of Earth-affecting Solar Transients
ISEST

Jie Zhang,
(George Mason University,

USA)

Nat Gopalswamy,

(Lab. for Solar & Space Physics,

Manuela Temmer, NASA/GSFC, USA)
(UNIVERSITY OF GRAZ, Austria)




ISEST/Minimax24

How well do we understand the relation between solar
events and the geoeffective disturbances?

Electron kj? \\\
o \ \

CME
Plasma

Shock

Counterstreaming
Electrons

e
Turbylent _____ _——
 Shedth
_

Can we predict a CME’s magnetic field based on its solar origin?
Can we predict a high speed stream’s speed?
Do we know what happens to them during their way from the Sun to the Earth?



http://solar.gmu.edu/heliophysics/index.php/ISEST
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ISEST

This wiki is specifically for data sharing and discussion forum of the ISEST program. We encourage everyone to upload any data pertaining to ICMEs to this wiki and to
discuss events freely in the discussion section of each page. Please do not alter any data that is not yours without the express permission of the uploader. For any
guestions of using this Wiki, email Phillip Hess at phessd4@gmu.edu

The ISEST/MiniMax24 (International Study of Earth-Affecting Solar Transients) is one of the four projects of the VarSITI (Variability of the Sun and Its Terrestrial Impact) & program,
which runs from 2014 to 2018. The VarSITI is the current scientific program of SCOSTEFP (Scientific Committee on Solar-Terrestrial Physics &,

Goals and objectives: Understand the propagation of solar transients through the space between the Sun and the Earth, and develop space weather prediction capability.

Questions: How do coronal mass ejections (CMEs) and cerotating interaction regions (CIRs) propagate and evolve, drive shocks and accelerate energetic particles in the
heliosphere?

Dataftheory/modeling: Establish a database of Earth -affecting solar transient events including CMEs, CIRs, flares, and energetic particle events based on remote sensing and in-
situ observations from an array of spacecraft, run observation campaigns such as MiniMax24, develop empirical, theoretical, and numerical models of CME propagation and
prediction, validate models using observations.

Anticipated outcome: A comprehensive database of Earth -affecting solar transients will be created, and space weather prediction capability will be significantly improved.
Ceo-leaders: Jie Zhang (USA) (jzhang7@gmu.edu), Manuela Temmer (Austria), Nat Gopalswamy (USA)

Working Group Leaders: (1) WG1 (Data Group): Jie Zhang (George Mason University, USA), (2) WG2 (Theory Group): Bojan Vrsnak (Hvar Observatory, Croatia); (3) WG4
(Simulation Group): Fang Shen (CSSAR, China); (4) WG4 (Event Campaign Group): David Webb (Boston College, USA); (5) WG5S (Bs Challenge Group): Spiros Patsourakos
(University of loannina, Greece); (6) WG6E (SEP Group): Olga Malandraki (National Observatory of Athens, Greece); (7) MiniMax24 Campaign: Manuela Temmer ( University of
Graz, Austria)

Scientific Organization Committee members: (1) Ayumi Asai (Kyoto University, Japan); (2) Mario M. Bisi ( RAL, UK}, (3) Kyungsuk Cho (KASI; South Korea); (4) Peter Gallagher
(Trinity College Dublin, Ireland); (5) Manolis K. Georgoulis {Academy of Athens, Greece); (8) Nat Gopalswamy (co-leader) (NASA/GSFC, USA); (7) Alejandro Lara (National
Autonomous University, Mexico); (8) Noe Lugaz (University of New Hampshire, USA); (9) Alexis Rouillard (CNRS/IRAP, France); (10) Nandita Srivastava (Physical Research Lab,
Indiay; (11) Manuela Temmer (co-leader) (University of Graz, Austria); (12) Yuri Yermolaev (Space Research Institute, Russia); (13) Yu-Ming Wang (Univ. of Science and
Technology, China); (14) David Webb (Boston College, USA); (15) Bojan Vrsnak (Hvar Observatory, Croatia); (16) Jie Zhang (co-leader) (George Mason University, USA)



ISEST/Minimax24
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Anomalous Expansion of CMEs in Cycle 24

Cycle-24 CMEs are 52% wider for V=1000 km/s \\\
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Gopalswamy et al. (GRL, 2014): CME size difference by different background pressure
condition in Cycle 23 and 24.
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Temmer et al. (Sol.Phys, 2017, ISEST special issue): Flare-CME Characteristics from Sun to Earth



0 2015-06-21 03:03

2
1600
15}
1400
1.0+
1200
S 05 = -
= < 1000 £
2 00 o £
T I 800
= -05 = >
600
-1.0
400
e 200 O Mercury
-2.0 L L L L @ Venus
-2.0-15-1.0-0.5 0.0 0.5 1.0 1.5 2.0 ® Earth
2.0 2.0 ; ; ® Mars
60 m STA
15f 1.5} m STB
1.0}k 1.0} 2 .
S 05} 5 05 40 ¢
< < -
2 o0 2 ool 30
w L =
3 z z
= —0.5 o 0.5 20
g ok =
1.0 10
-1.5 -1.5¢
0
20— =~ R 20—
-2.0-15-1.0-050.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0
+ [HEEQ AU] Distance [AU]

Pomoell and Poedts (J. Space Weather Space Clim. 2018): EUHFORIA: European heliospheric



Specification and Prediction of the Coupled
Inner-Magnetospheric Environment
(SPeCIMEN)

Specification and Prediction of the Coupled Inner-Magnetospheric
Environment
SPeCIMEN

Jacob Bortnik,‘ Craig Rodger,
(Dept. of Atmospheric and Oceanic Sciences (University of Otago,

UCLA, USA) New Zealand)

Shri Kanekal,
(NASA/GSFC, Greenbelt, USA)

Yoshi Miyoshi,
(ISEE, Nagoya University, Japan)



How well do we understand what happens in the Earth’s

magnetosphere based on inputs from the Sun and solar wind?
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Can we go from modeling to predictions



Van Allen Probes (RBSP) 2012- THEMIS 2007-

-ERG (Arase) 2016-
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Axis
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In a—e the highly energetic
electrons measured by REPT
sensors throughout the
mission never seem to extend
inwards of L = 2.8. This forms a
particularly clear and sharp
boundary for the
ultrarelativistic electrons as
shown in c—e.

i0 8
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Sep.2012 May 2014

Baker et al. (Nature, 2014): Discovery of sharp inner boundary for the ultrarelativistic
(E>5MeV) electrons in the Earth’s radiation belts.
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Kasahara et al. (Nature, 2018): Arase (ERG) show one-to-one correspondence between ELF/VLF

chorus waves and electron fluxes in the loss cone.
= evidence of pitch-angle scattering to cause pulsating aurora.



VERSIM

(VLF/ELF Remote
Sensing of lonospheres
and Magnetospheres)
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mn/index.html
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Role Of the Sun and the Middle atmosphere/
thermosphere/ionosphere In Climate (ROSMIC)

Role Of the Sun and the Middle atmosphere/thermosphere/ionosphere In Climate
ROSMIC

Annika Seppala,
(Finnish Meteorological

Institute,
Finland)
F-J. Libken,
(Leibniz-Institut fur (University of New
Atmosphdrenphysik, Brunswick,

Germany) Canada)
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Gray et al. (Rev. Geophys., 2010)
How well do we understand solar variability effects on the middle
and lower atmosphere?
Solar versus anthropogenic Influence on Climate in the
Context of Weak Solar Activity



particle precipitation -
from the magnetosphere
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Andersson et al. (Nature Comm., 2014):
First evidence for radiation belt electron

precipitation impact on atmospheric ozone
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(a) Nightly Mean Temperature at 86km (90-14)
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She et al. (AnnGeo, 2015): long-term trend of mesopause temperature based on 25-year Na-
lidar measurements.
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(z0—2)/H Physical Processes
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We encourage communications among
different fields to promote interdisciplinary
studies

(1) mailing list
(2) web site
(3) newsletter
(4) financial support
(meetings, database, and campaign)
(5) database collection
(6) capacity building



(2) Web Site
VarSITl web-site http://www.varsiti.org/
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: VarSITI
Variability of the Sun and Its Terrestrial Impact
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Good Afternoon.
Welcome to: \/ariability of the Sun and Its Terrestrial Impact (VarSITI)
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Variability of the Sun and Its Terrestrial Impact

The VarSITI program is the next scientific program of SCOSTEP (2014-2018)

VarSITI was defined based on a community effort in the form
of a forum organized by the International Space Science Institute
(ISSI) in Bern during May 7-8, 2013. The VarSITI program will
strive for international collaboration in data analysis, modeling, and
theory to understand how the solar variability affects Earth.

The VarSITI program will have four scientific elements that address solar terrestrial problems
keeping the current low solar activity as the common thread:

o SEE (Solar Evolution and Extrema),
o MiniMax24/ISEST (International Study of Earth-affecting Solar Transients),

« SPeCIMEN (Specification and Prediction of the Coupled Inner-Magnetospheric

Environment), and




(2) Web Site
VarSITl web-site http://www.varsiti.org/
181,591 visits from January 1, 2014 to May 31, 2019
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One specialist (Mitko Danov) was hired to construct/maintain this website by BAS
and SCOSTEP grants.



(3) Newsletter
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VarSITI newsletters

Variabiity of the Sun and Its Terrestrial Impact (VarsiTl)
SEE / ISEST-Minimax24 / SPeCIMEN / ROSMIC
hittp://wew varsiti.org/
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Vol. 19, October 2018
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Project for Solar-Terrestrial Environment

Prediction (PSTEP) \/Meeting schedule
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4 issues per year (up to vol.21)
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Space Weather Disturbances and Social Impacts
Figure 1. The subject of PSTEP study. The objective of PSTEP is fo improve the

feedback between the scientific research and the operational forecast of space weather
disturbances and soqal mpacts.

Ayumi Asai

Miwa Fukuichi

One secretary was hired to edit this newsletter by ISEE.
This secretary also maintain the mailing list.

Megumi Nakamura



VarSITI Newsletter vol.1-21

Articles: 60 articles from 24 countries

Highlight of young scientists: 49 articles from 22 countries
Meeting reports: 85 articles from 28 countries

Short news: 24 articles from 8 countries
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(4) Financial Support (meetings, database, and campaign)
For the 5—year duration of the VarSITI program
we have organized or supported

e 64 meetings or sessions R
including VarSITI2016, VarSITI2017, VarSITI2019 ==

e 16 databases
e 1 campaign
1 interdisciplinary




(5) Database Collection

A collection of solar-terrestrial databases at VarSITl’s web site

Variability of the Sun and Its Terrestrial Impact
(VarSITI) 2014-2018
SEE / ISEST-MiniMax24 / SPeCIMEN / ROSMIC

About | Organization | Projects | Meetings | Publications | Resources | News | HOME |

)

Discussed at SCOSTEP-WDS Workshop on Sept.28-30, 2015 3
Last modified 11/23/2017 13:04:54

The list below has 134 different Databases
Print 1= (15pages) or download as Excel file & (118kB)

Contents
[1] database-comprehensive (7) [2] database visualisation tool (4)
[3] database-multi (10) [4] data analysis resources (&)
[5] model and ground-based observation (1) [6] model and satellite observation (1)
[7] model (2) [8] satellite observation (33=14+2+17)
[9] satellite observation (future) (3) [10] around observation (&7)

This effort to collect VarSITI-related database was initiated after the SCOSTEP-WDS
workshop in 2015. Co—chairs ask the VarSITI members to provide information of these
databases via the VarSITI mailing list. Some database supported by SCOSTEP/VarSITI
funding are also added.



List of the collected database

database/missi
on name

description

URL

type

region

database
. . . . . .. t h
SPIDR web—based data visualization tool http://spidr.ngdc.noaa.gov/ o o o visualisation magl:le R
and ionosphere
tool
. . . database
interactive data analysis tool on web— http://ergsc.stelab.nagoya— . X : magnetosphere
ERGWAT g . . o o (@) visualisation .
browser u.acjp/analysis/ergwat/index.shtml.en tool and ionoerhere
CEIE LR magnetosphere
Autoplot data visualization tool http://autoplot.org/ (@) (@) o visualisation g. =
and ionoauhere
tool
database magnetosphere
SPEDAS data visualization tool http://spedas.org/blog/ (@) (@) (@) visualisation g. =
and ionosphere
tool
. . . . datab = d
HELIO Heliophyiscs Integrated Observatory http://hfe.helio—vo.eu/Helio/ o o o (@) ata aée s!.m an
multi heliosphere
tni | ind and IMF data at . datab = .
OMNI ;::rll_lnluous solar wind an ata a http://spdf.gsfc.nasa.gov/data_orbits.html o (@) (@) () a riulat?e interplanetary
CDPP solar win.d and magnetosp?heric http://cdpp.eu/ o o o o databaﬁe— interplanetary and
observations from space instruments multi magnetosphere

ACE Lists of

Shocks. magnetic clouds.




(6) Capacity Building (Schools organized by VarSITI Co—chairs)

Sept 2017: Ota, Nigeria, 38
July 2017: Irkutsk, Russia, 35 students from 5 countries

students from 7 Afrlcan countrles

s
e
e

1
,,u\“.

Sept 2015: Abuja, Nigeria, 65 students _
from 7 African countries Aol

March 2018: Bandung, Indonesia,
40 students from 7 AS|an countrles.

March 2015 Bandung, IndoneS|a 39
My students from 9 Asian countries.

s “hi 1



VarSITIl has 4 scientific projects

International Study of Earth-Affecting Solar
Transients (ISEST)/MiniMax24

How do coronal mass ejections (CMEs) and corotating Interaction regions iCIHs:I propagate
and evolve, drive shocks and accelerate energetic particles in the heliosphere?

| _,JI bﬂ‘ \ : L :'ﬂnmpher.'cpg:snﬁ;ubbfe
'- l"l

Role Of the Sun and the Middle
5 atmosphere/thermosphere/ionosphere

i

< Snlar Evnlutiun and

Extrema (SEE) In Climate (ROSMIC)

we atth ﬂrgquf ew grand minimum? If not, what is
ationifor é’:h
Fe H.:qlt hesﬁhderstandlng af the evalution of salar versus energetic particles?
npi ‘[n}s lwe the “Faint Young Sun” problem?  2) How is the solar signal transferred from the thermosphere ta the tro%phere?
h

1) What is impact of selar forcing of the entire atmosphere? What is the relative importance of solar irradiance
L]

ity waves and turbulence).
re, Lower Thermosphere,

?E’l”t"?‘“st' 3) How does coupling within the ttrrestrlal atmosphere function [e.g. g

Whal g Ehﬂ-‘ﬂ""’ eruption;/ “‘ﬁlﬂ'ﬂﬁﬂmﬂl What is the 4) What is the impact of anthrepegenic activities on the Middle Atmosp
kY

anforp nuaswlth absence

| !

lonosphere (MALTI? ™
5) What are the characteristics of ree@nstructions and predictions of TSl and 5517
€) What are the implications of trends in the ionosphere/ thermaosphere for technical systems such as satellites.

Specification and Prediction of the
Coupled Inner-Magnetospheric
Environment (SPeCIMEN)

-3
Sy e B ' =
o~ : : Can the state of the Earth’s inner magnetosphere be specified and
predicted to high accuracy, based on inputs from the 5un and solar wind?

i M-a ol
# g % 1 . 2 "
variability of solar activity Vo . =) . ,
,ﬂﬂjﬂr aurorg

solar influence on climate

tutdre humanesoiition.com

VarSITI Leaflet (distributed in Dec 2015)




Scientific Commlttee on Solar-Terrestrial Physics

The SCOSTEP Next Scientific Program

PRESTO:
Predictability of the variable Solar-Terrestrial
Coupling



