### The very slow solar wind: properties, variability and origin

出



**E. Sanchez-Diaz**<sup>1</sup>, A. P. Rouillard<sup>1</sup>, P. L. Blelly<sup>1</sup>, R. Pinto<sup>1</sup>, B. Lavraud<sup>1</sup>, K. Segura<sup>1</sup>, C. Tao<sup>1,3</sup>, N. R. Sheeley<sup>2</sup>, I. Plotnikov<sup>1</sup>

<sup>1</sup>Institut de Recherche en Astrophysique et Planétologie (IRAP-CNRS/UPS), Toulouse, France <sup>2</sup>Space Science Division, Naval Research Laboratory, Washington, District of Columbia, USA <sup>3</sup>National Institute of Information and Communications Technology, Tokyo, Japan

## One example of VSSW



- V<300 km/s
- Remote observations
   STEREO-HI (Plotnikov et al., 2015)
- In-situ HELIOS



## WHY is it not seen at IAU?



## WHERE and WHEN is it measured?





4

## Solar cycle variability



## Relative alpha to proton velocity



 Very Slow Solar Wind: narrow distribution. Small relative velocities
 Coming from a collisional region?

• Fast wind: wide distribution



## H<sup>+</sup>: HD model

Description

→ID HD solution projected on a field line with any geometry

→Phenomenological heating flux Applicability

 $\rightarrow$ Chromosphere

 $\rightarrow$ Transition region

→Corona

Described in Pinto et al. (2009), Grappin et al. (2010), Verdini et al. (2012)



## He: HS model

$$\int k_{B}T_{\alpha}\frac{\partial n_{\alpha}}{\partial r} + n_{\alpha}m_{\alpha}g = -\nu m_{\alpha}\Phi_{\alpha}$$

 $n_{\alpha}(r) = C_{g}e^{-\frac{r}{H_{g}(r)}} + C_{d}e^{-\frac{r}{H_{d}(r)}}$ 

 $H_d(r) = \frac{1}{\frac{1}{H_p(T_p(r))} + \frac{\beta}{r}}$ 

 $H_g(r) = H_\alpha(T_\alpha(r))$ 

 $\frac{\partial \Phi_{\alpha}}{\partial r} + \frac{\beta \phi}{r} = 0$ 

Momentum equation

Continuity equation

Local solution for layers of ~constant temperature, height

Diffusive scale height

Gravitational scale height

9



## Boundary conditions: scale heights $C_g + C_d = n_\alpha (r = R_0)$ $C_d = \frac{\phi_\alpha (r = R_0)}{D_\alpha} \left( \frac{1}{H_d} - \frac{1}{H_g} \right)$

C<sub>d</sub><0 (H<sub>g</sub><H<sub>d</sub>) → Momentum transfer H←He → collisions slow He down

C<sub>d</sub>>0 (H<sub>g</sub>>H<sub>d</sub>) → Momentum transfer H→He → collisions accelerate He

## Profiles of relative scale heights



- Above Transition
  Region: diffusion
  region with
  H<sub>g</sub>>H<sub>d</sub> → He lifting
  by diffusion is
  possible
- Higher up in the corona H<sub>g</sub><H<sub>d</sub>: He<sup>++</sup> might be slowed down by collisions with H<sup>+</sup>

## Two possible scenarios



# Diffusive region: dependence with heating rate



## Summary

#### **Properties**

- SW Speed extends down to 200 km/s inside 0.7 AU
- VSSW dissapears in SIR
  - Composition, density, etc., adding to slow wind variability
- Signature of HPS crossings

### Origin

Diffusive region ~1.01-1.1 R<sub>sun</sub>:

- Momentum transfer H→He
- Wider & lower for higher heating rate (solar max) →
   Scenario 2 (He uplifting) more likely
- Above ~I.I R<sub>sun</sub>:
- He slowed down if collisions enough

