

First VarSITI General Symposium June 6-10, 2016, Bulgaria

Topside electron density from Irkutsk incoherent scatter radar, COSMIC/FORMOSAT-3 and International Reference Ionosphere
K.G. Ratovsky¹, A.A. Shcherbakov¹, S.S. Alsatkin¹, A.V. Dmitriev^{2,3}, A.V. Suvorova ^{2,3}

¹Institute of Solar-Terrestrial Physics, Irkutsk, Russia ²National Central University, Jhongli City, Taoyuan County, Taiwan ³Scobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia The work was supported by RFBR grant 14-05-92002 HHC_a and RAS Project II.16.1.2

Irkutsk Incoherent Scatter Radar (IISR) (52.9°N, 103.3°E)

The main distinctive features:

(1) The IISR power profile is modulated by <u>Faraday rotation</u> due to radiating and receiving only one linear polarization. This feature allows eliminating the ionosonde calibration, but complicates the N_e profile calculation technique.

(2) IISR is only the mid-latitude radar located at <u>far-from-pole longitude zone</u> where difference between geographic and geomagnetic latitudes is the largest.

The long-duration Irkutsk incoherent scatter radar observations allowed collecting 337 electron density profiles obtained with ISR and COSMIC in the ISR vicinity (\pm 5°). The COSMIC profiles were also compared with those from Digisonde, and IRI model.

Observation periods	Number of Days	Number of Simultaneous cases	Yearly mean F10.7 (s.f.u.)
JUN 05 - JUN 19, 2007	15	46	73
AUG 25 – SEP 28, 2008	35	44	69
APR 01 – APR 18, 2009	16	32	71
JAN 12 - FEB 28, 2010	48	62	80
JAN 16 - FEB 16, 2011	32	28	114
APR 12 - APR 21, 2011	10	6	
JAN 18 - FEB 05, 2012	8	13	120
APR 06 – APR 22, 2012	12	23	
JAN 01 – JAN 21, 2013	19	49	123
JUN 21 – JUN 30, 2013	9	24	
DEC 25 - DEC 31, 2013	4	10	
In total	208	337	

We compare : <u>peak electron density NmF2</u>, <u>Bottomside Electron Content</u> (170-300 km range), <u>Topside Electron Content</u> (300-600 km range) and <u>ionospheric electron</u> <u>content</u> (170-600 km range)

Incoherent Scatter Radar (ISR) measurement technique

IISR radiates and receives only one linear polarization, and the received power profile P as function of z is modulated by the Faraday rotation

$$P(z) = A \cdot \frac{Ne(z)}{(z/\cos(\beta))^2} \cdot \cos^2(\varphi(z)) + B,$$

$$\varphi(z) = \frac{2\pi\cos(\theta)}{cf^2\cos(\beta)} \int_0^z f_p^2(z') f_H(z') dz'$$

Faraday modulation does not enable to calculate Ne(z) directly from P(z), but allows obtaining Ne(z) without an ionosonde calibration. In this study we use the approximation of Ne(z) by the Chapman-like function:

 $Ne(z) = NmF2 \cdot \exp(1 - x - \exp(-x)),$

where $x = (z - hmF2)/H_T$ at z > hmF2,

and $x = (z - hmF2)/H_B$ at z < hmF2,

where H_T and H_B are the topside and bottomside scale heights, respectively. The Ne(z) profile characteristics (*NmF2*, *hmF2*, H_T and H_B) as well as A and B were derived by least squares fit of the model P(z) to the received power profile.

Comparison of peak density (NmF2)

Comparison with other validations of COSMIC

Reference	Tool	Solar activity	σNmF2 (10 ⁵ cm ⁻³)	$\Delta NmF2$ (10 ⁵ cm ⁻³)			
This study	ISR, Digisonde	Low	0.28	0.05			
		Moderate	0.85	-0.05			
Agreement with tools located at latitudes near 50N or higher							
Krankowski et al., J. Geod. 2011	European Digisondes (36-55N, 0-20E)	Low	0.20	0.01			
Cherniak and Zakharenkova, Adv. Space Res, 2014	Kharkov ISR (50N, 26E)	Low	0.28	-0.09			
Hu et al., Ann. Geophys., 2014	Mohe Digisonde (54N, 122E)	Moderate	0.60	0.01			
Disagreement with tools located at latitudes near 40N or lower							
Mikhailov et al., J. Space Weather Space Clim., 2014	Millstone Hill ISR (42 N, 289E)	Low	0.40	0.58			
Hu et al., Ann. Geophys., 2014	Beijing Digisonde (40N, 116E)	Moderate	1.70	1.30			
Hu et al., Ann. Geophys., 2014	Wuhan Digisonde (31N, 114E)	Moderate	3.60	2.00			

Comparison of bottomside (170-300 km) electron content (BotEC)

Comparison of topside (300-600 km) electron content (TopEC)

Comparison with other validations of COSMIC

None of the previous incoherent scatter radar studies have reported that the COSMIC overestimates the topside electron density with a better agreement in the bottomside.

Cherniak and Zakharenkova (Adv. Space Res, 2014) concluded that the topside profile shape showed rather good agreement between the COSMIC and the Kharkov incoherent scatter radar.

Mikhailov et al. (J. Space Weather Space Clim, 2014) concluded that in the majority of cases the COSMIC topside profile coincided fairly well with the Millstone Hill incoherent scatter radar observations, while the coincidence in the bottomside profile was not good for the 40% of the analyzed cases. Their result is opposite to our findings. Possibly, the comparison results strongly depend on the ground-based facility location, at least the mentioned above ionosonde comparisons show that this may be the case.

Comparison of ionospheric (170-600 km) electron content (IEC)

Comparison of ISR ~ monthly averaged Ne and IRI prediction

Agreement in Summer is reasonable, while in the winter daytime IRI overestimates the ISR topside Ne by 3-4 times.

Comparison of ISR ~ monthly averaged Ne and IRI prediction

IRI overestimates the ISR topside Ne on the whole and does not reproduce a multipeak variations of the ISR Ne at ~ 300 km and above .

Summary

Our comparison included 4 seasons and 2 solar activity levels (low and moderate), and the number of simultaneous cases was ~10 times more than in the previous incoherent scatter radar comparisons.

■ In the case of the bottomside characteristics (peak density and bottomside electron content), the deviations between the COSMIC and the ground-based facilities data may be interpreted as the COSMIC measurement errors without significant systematic biases and with root-mean-square values that are ~1.4-1.6 times smaller those that from the IRI model prediction. The rise in the root-mean-square errors with increasing solar activity may be explained by the corresponding rise in latitudinal and longitudinal gradients of the electron density. Our comparison agrees closely with the tools located at about 50°N latitude, while differs from the comparisons at latitudes near 40°N or lower.

In the case of the topside characteristics (topside electron content and ionospheric electron content), the IRI model overestimates the COSMIC data by 0.6-0.8 tecu on average, and the COSMIC overestimates the Irkutsk incoherent scatter radar data by 1.0-1.1 tecu on average. In terms of the root-mean-square deviation, the COSMIC and the radar agree better than each of them agrees with the IRI model. None of the previous incoherent scatter radar studies have reported that the COSMIC overestimates the topside electron density with a better agreement in the bottomside. Possibly, the comparison results strongly depend on the ground-based facility location, as it is seen from the comparisons of NmF2.