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TAGA Division II
WG C - Meteorological Effects on the Ionosphere

Areas of interest:  physics behind the forcing mechanisms which originate in the lower

atmosphere and play an important role i the coupling of the upper atmosphere and

1onosphere.
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coupling of spatial domains through dynamics

coupling through transport of atmospheric constituents and feedback of dynamics
on the chemuistry

electrodynamic coupling of the atmosphere and 1onosphere and the role of the
electrical processes n the coupling

improve understanding the space climatology

satellite measurements, ground based measurements, theoretical studies, models
Solar impact and modulation of coupling processes

Overlapping with ICMA (The International Commussion on the Middle Atmosphere)
and SCOSTEP (Scientific Commuttee on Solar-Terrestrial Physics) - project CAWSES

II/ Task 4 (Climate And Weather of the Sun-Earth System) and VarSI'TI (Variability of
the Sun and Its Terrestrial Impact)

Dora Pancheva - WG 11 C leader, Division II chair 2011-2015

First meeting in Prague 2000 - Workshop on Lower Atmosphere Effects on the
Ionosphere and Upper Atmosphere
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Atmospheric waves, Sudden Stratospheric Warming, Generation of waves
by meteorological events and characterization of their source spectrum.

Propagation of atmospheric waves (acoustic-gravity waves, tides, Kelvin
waves, tidal and planetary waves) from the source region to the 1onosphere-
thermosphere.

Linking 1onospheric varnability (electric fields, plasma parameters, etc.) and
meteorological events on various time scales.

Sun-Earth connection, space weather, atmospheric response to energy
impact.

Galactic Cosmic Rays influence on the processes mn the atmosphere

Theoretical modelling - wave generation, evolution, interactions



Amplitude of PW1 in geopot. height (m) at 62.5N

The SSW events are more intensive and/or

the frequency of these events 1s higher under
the easterly QBO phase.
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Nonlinear wave-wave and wave-mean flow
interactions can play an important role before
and during SSW. These processes can lead
to the excitation of SPW 1n the upper
stratosphere.

log—press. height

height

Important to consider the dynamical
processes 1 the stratosphere long before - at
least 2-3 weeks before the onset of SSWs, or
even longer.

log—press.

The SSW definition recommended by the
WMO (Butler et al., 2015) can be
reconsidered, at least in respect to the altitude
(for instance, these events have to be looked
at about 40 km and judged by temperature
changes, and/or even higher for the zonal jet
reversals).

log—press. height

Time lag (d
Pogoreltsev et al. ime lag (days)


http://www.sciencedirect.com/science/article/pii/S1364682615300341#bib8
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waves to very high amplitudes that
causes wave overturning and
releasing of wave energy mnto the

heat due to the cascade breakdown
and turbulence.

Winter Brewer-Dobson circulation 1s the
result of well pronounced downward spiral
jet-stream circulation (ime scale about 20-30

days) and has no relation to PW-GW
mteraction.

Shpynev et al.
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Increase in the F2 layer wave-like
disturbances corresponds to periods of
stratospheric wave activity

Chernigovs



Peariod (Day)

Lol =2

WTC [meridional wind 94 km.foEs]

f\;\ ‘F‘ EE] a3
4

«eEF -
8r \:ﬁr P /
T
32

Wi [mermior{an wind 91 km foEs]

15 g

= WTC [mendional wmd 88 km foEs]
Y TS Ay Lk

e

WTC [meriﬂional wind 85 km,foEs]'
¥ L N

A\ . "7

P4
B_ \\ ““-"“.‘ - ,-”/
16 el

o WTC [meridional wind 82 km,foEs]

1\ .- ¥ v
4 b\ v 4
it gl
16+ i+ i
2 =

1Jun 1 Jul 1 Aug

M2 O OO

L ,."

31 Aug

FPeriod (Davy)

WTC [zonal wind 94 km foEs]
¥ e N I
i
8 ‘l- 5 1
16 g s J
39 i J
WTC [zonal wind 91 km,foEs]

. Tl
W f
%J

", -

Lo —=
P2 O O

WTC [zonal wind 88 kmfoEs]

=

WTC [zr,mal wind 85 km JfoEs)

;}'!n‘“i

WTC [zonal wind 82 km,foEs]

; '23 ,,...,y"

Cod —>
[ e e

1Jun 1 .JuI 1 Aug

Mosna et al.

31 Aug

WTC [T(0.1hPa),foEs]

WTC ET(O 1hPa),hEs]

= e F_’ '
g - - " 4 m 1i
16 -a_ i m‘ . / ;
32— WTC [Tl[1hF’a \foEs] 32 WTC [T(1hPa]| hEs]
— ~—— ). ,
g J g'. oo . iy
';;gl 16 = 16} V i
[m| [11] |
= 2 — WTC [T(5hPa)foEs] Q32 WTC [T(5hPa),hEs]
t SO | &
& i " ‘ 6"'3 -’-1- !
8 . S | 8 / |
16 | 16 :
A rTe TP [T(mhpa} foEs] 82 —e [T{'IDhPa) REs]
4 4 e /|
8 8 e 4 - {.
16 16 ~ > i
32 32 s -:
1 Jun 1 Jul 1 Aug 3 Aug 1Jun 1 Jul 1Aug 31 Aug

Date (2009)

Dominant periods detected in temperature
and wind data coherent with the Es data are 2,
5, 9-10, and 15 day periods which correspond

to the planetary eigen-modes.

Certain coherent structures
through the atmosphere.

are persistent
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Correlation coefficients of foF2 are high not only for raw data
and subtracted mean courses but for fluctuations around mean
as well.

At the surface distance exceeding 1000 km and/ or about 10
degrees of latitudinal difference between stations, the
correlation coefficient of fluctuations decrease rapidly.

As a possible source of the common influence on scale
1000 km/10 degree we propose tropospheric systems
Large tropospheric mesoscale systems have typically
up to 2000 km in diameter.

Koucka KniZova et al.
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Low latitude M2 amplitude maxima between 10 and 15 m s—1 that occur twice yearly close tc
equINOX.

M2 m WACCM-X exhibits only one global-scale maximum per year. Amplitudes are
comparable with observations

M?2 1s a climatological feature of the thermospheric wind system, with the potential to modulate

transport of plasma along magnetic field hines. Lichermnte s



SFH amplitudes of AGW velocities
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The AGWs mfluence the horizontal and vertica
motion of 1ons, and lead to their convergence
into thin horizontal layers.

Ion/electron density of Es layer depends on the
value of the horizontal shear of a magnetic
north-directed background wind.

It 1s shown that the plasma density of Es layers
also depends on the horizontal and vertical
amplitudes of AGWs' velocity perturbations,
which mcrease 1n the horizontal shear flow and
cause a formation of multilayered sporadic-E.

The Es layers mainly move downwards, but at
certain spatial location, where temporal changes
in wave phase caused by background shear flow
and AGW are small, these layers are almost
horizontal.

The vertical spatial location of the horizontal Es
layers 1s determined by the vertical wavelength
of atmospheric gravity waves.



Spring breakup date

Spring breakup date
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Grouped according to the phases of
the Quasi-Biennial Oscillation
(QBO):

dependence of spring transition
dates on solar activity.

Dividing data on early and later
spring transition:

the stronger influence of solar signal
1s revealed at late spring transition.

Under high solar activity conditions,
the relation between spring
transition dates and solar activity 1s
stronger than at low one.

Rakushina et al.
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Energetic particles influence on the
lower stratospheric ozone, followed by
warming/cooling, and drying/moisturing
of the upper troposphere - lower
stratosphere region, 1s capable of
explaining the surface T variability

during the studied period 1957-2012.

Existence of centers of action, where
lower stratospheric ozone constantly
influence the water vapour density near
tropopause.

Winter NH - North Atlantic, North
Pacitic

Summer SH - Indian and Pacific extra-
tropics, South Atlantic magnetic
anomaly.

NH i1s more sensitive to GCR

SH to solar protons

Kilifarska
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- High- latitude mean ion flows are

enhanced by up to 150-180%.

':_: Largest 1on flows are found 1n the

- main phase of the storm.

Global mean neutral temperature increases by up to 15%, while the maximum thermal
response 1s higher in the winter Southern Hemisphere at high-latitudes than the summer
Northern Hemisphere: 40% vs. 20% increase in high-latitude mean temperature,

respectively.

The global mean Joule heating increases by more than a factor of three.

Distinct hemispheric differences i the magnitude and morphology of the horizontal 1on
flows and thermospheric flows during the different phases of the storm.

The largest hemispheric difference in the thermospheric circulation 1s found during the
main and recovery phases of the storm, demonstrating appreciable geographical

variations.

Yigit et al.
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Large tropospheric sources of dimensions ~100km or more at equatorial geomagnetic
latitudes create large electric fields i the lower 1onosphere at night: millivolts per
meter, due to the horizontal orientation of the magnetic field, the effect of Hall
conductivity, and the self-consistent conductivity decrease. The horizontal dimension of
these fields i eastward direction 1s 300 to 400 km, in agreement with the

conhigurations of the related electric currents.

These currents are reoriented n the lower 1onosphere from predominantly vertical to
actually horizontal due to the magnetic field orientation and to the effect of Hall
conductivity.

T'’he horizontal scale of Quasi-static electric fields and currents 1s hundreds of
kilometers - much larger than in the case of high and middle latitudes.

The electric fields at altitudes above 90 km generated by thunderstorms are sensitive to
the solar activity, since the con- ductivity there mcreases during solar maximum, with
respect to 1ts minimuim.

During solar mimimum, of the vertical dimension of sprites increases by up to 1.5 km
than those during solar maximum.

Reduction of cloud conductivity by a factor of 5-10 leads to larger vertical dimension
of sprites due to descending of the sprite lower boundary by up to Skm related to the
case of unmodihied cloud conductivity. Tonev and Velinov
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IAGA/ICMA/SCOSTEP ,_ ,
6th Workshop on Vertical Coupling in the Atmosphere-lonosphéere System
July 25 - 29, 2016. Taipei, Taiwan ;

http://www.ss.ncu.edu.tw/~vcais6/

Workshop 1s organized by the International Association of Geomagnetism and
Aeronomy (IAGA), the
International Commussion on the Middle Atmosphere ICMA) of the
International Association of Meteorology and Atmospheric Science (IAMAS),
and the Scientific Committee on Solar Terrestrial Physics (SCOSTEP).
The 6th Workshop 1s locally organized and hosted i Taiwan by
National Central University, National Cheng Kung University, and Academia
Sinica.
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