Risk of false alarms in ICMEs, IMF and solar wind predictive capabilities of the major geomagnetic and ionospheric storms

T.L. Gulyaeva

IZMIRAN, Troitsk, 142190 Moscow, Russia
gulyaeva@izmiran.ru
Outline

* Introduction
* Metrics of the ionosphere storms
* Combined criteria for three categories of geomagnetic activity
* Efficiency and risk of false alarms using ICME, IMF and SW precursors of geomagnetic and ionospheric storms
* Conclusions
* Acknowledgements
* Movie of VarSITI storm 17.03.2013 in the ionosphere
Numerous studies of geo-effectiveness of the solar and interplanetary parameters testify on their limited predictive capabilities.

For example, results by Alves et al. [JGR, 111, A07S05, 2006] show that 33% of Corotating interaction regions (CIRs) are followed by moderate / intense magnetic activity (\(\text{Dst} < -50\, \text{nT}\)), i.e., approximately one third of the CIR events observed near Earth are geo-effective while 67% of observed CIRs could be a source of the false alarms in Dst storm predictions.

The present study is focused on estimates of efficiency of the ICME's, IMF and the solar wind SW impact on the evolution of the geomagnetic storm and ionospheric TEC storm with its positive phase (\(V_p\)) and negative phase (\(V_n\)).
The ionospheric activity is analyzed with daily-hourly V(TEC) index maps produced from Global Ionospheric Maps, GIM-TEC, for 1999-2015.

The geomagnetic storms affecting the ionosphere are determined with relevant thresholds of AE, aa, ap, ap(τ) and Dst indices. The ap(τ) is the mean weighted value of ap index [Wrenn, JGR, 92, 10125, 1987]: $ap(\tau) = (1 - \tau)(ap_0 + ap_1\tau + ap_2\tau^2 + \ldots)$, $T = 11h$ or $\tau = \exp(-3/T) \approx 0.76$.

The ICME list of 409 events [Richardson and Cane, Solar Phys., 264, 189-237, 2010] during 1999-2015 is associated with 3 categories of geomagnetic activity: (1) intense storms; (2) moderate disturbance; (3) quiet state.

Risk of the false alarms in using the ICME, IMF, SW and SSC parameters for the geomagnetic and ionospheric storm predictions is evaluated.
Metrics of the ionosphere storms

• The source JPL Global Ionosphere Maps GIM-TEC for 1999-2015 in IONEX format (-87.5:2.5:87.5°N in latitude, -180:5:180°E in longitude) are analyzed.

• Using sliding-window statistical analysis, moving daily-hourly TEC median μ for -15 preceding days with estimated variance bounds is obtained at GIM-TEC cell.

• σ - root-mean square TEC deviation for particular UT hour at the map cell regarding quiet reference median μ.

• The ionospheric disturbance
 \[V(\text{TEC}) = \Delta\text{TEC}/\sigma, \quad \Delta\text{TEC} = \text{TEC} - \text{TEC}_\mu \]

• TEC enhancement/diminution is defined by the positive/negative V index.

• TEC storm occurs when an instant TEC is outside of μ±1σ.

• Relative occurrence density (%) of clouds of positive TEC storm, Vp, at TEC > μ+1σ and large-scale troughs of ionization, Vn, at TEC < μ-1σ are represented by the number of cells with TEC enhancement (m1) / diminution (m2) normalized by the total number of cells (m3) on a map:
 \[Vp = m1/m3 \times 100\%, \quad Vn = m2/m3 \times 100\% \]
Global maps of GIM-TEC, TECσ, and V(TEC) storm on 29.04.2014 23:00 UT after ICME/SSC

ICME/SSC on 04/29/2014 20:00:00 UTC
[The ISEST Event List]
[ICMEs List 1996-2016]
[SSC.dat]
Daily Vp, Vn indices during 2003

ICME days - grid on, including Halloween storm 29-30 October, 2003.

VarSITI, Albena, Bulgaria, 6-10.06.2016
Combined criteria of geomagnetic activity applied to List of 409 ICMEs for 1999-2015
Thresholds for three categories of geomagnetic activity

<table>
<thead>
<tr>
<th>Index, nT</th>
<th>Storm</th>
<th>Disturb</th>
<th>Quiet</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-max</td>
<td>1000+</td>
<td>500:999</td>
<td><500</td>
</tr>
<tr>
<td>aa-max</td>
<td>90+</td>
<td>45:89</td>
<td><45</td>
</tr>
<tr>
<td>ap-max</td>
<td>60+</td>
<td>30:59</td>
<td><30</td>
</tr>
<tr>
<td>ap(τ)-max</td>
<td>28+</td>
<td>14:27.9</td>
<td><14</td>
</tr>
<tr>
<td>Dst-min</td>
<td>≤-100</td>
<td>-99:-50</td>
<td>>-50</td>
</tr>
</tbody>
</table>

![Geomagnetic Indices at EQ M6.0+ 1964-2015](image)
Histogram of percentage occurrence of Post-ICME Vp index (left) and Vn index (right) for three categories of geomagnetic activity.
Example of V_p, V_n indices during storm with ICME precursor at solar maximum 7-8.09.2015

VarSITI, Albena, Bulgaria, 6-10.06.2016
Example of V_p, V_n storm with IMF B, dB/dt, Np and Tp increments but ICME is missing at solar minimum 4-7.01.2008
Typical profiles of ionospheric storm V_p and V_n indices and Dst storm during $[t_0-6h:t_0+48h]$, $t_0=0$ at SSC. Left - with IMF and SW precursors, right - none IMF and SW precursors.

V_p and V_n global occurrence; North and South high latitudes ($\text{dip} > \pm 60^\circ$).

VarSITI, Albena, Bulgaria, 6-10.06.2016
Efficiency and risk of false alarms of ICME precursors for the intense storms of $AE \geq 1000$ nT, $Dst \leq -100$ nT, and planetary TEC storms

Efficiency of ICME and other precursors, Ef:

$$Ef = \frac{n_1}{n_2}$$ \hspace{1cm} (1)

Risk factor of false alarm, Rf, %:

$$Rf = \frac{n_2 - n_1}{n_2} \times 100\%$$ \hspace{1cm} (2)

n_1 - number of Storms-with-Precursors

n_2 - total number of Precursors

Risk of false alarms:

$Rf(\text{ICME, Dst}) = 81\%$

$Rf(\text{ICME, AE}) = 62\%$

$Rf(\text{ICME, TEC}) = 64\%$

VarSITI, Albena, Bulgaria, 6-10.06.2016
The storm onset ($t_0 = 0$) is determined from IMF and SW parameters with the following thresholds [Tsagouri and Belehaki, 2006; Yenen et al., 2015; Gulyaeva, 2015]:

1. IMF ΔB is increased by $\Delta B \geq 3$ nT for 3h [t_0, $t_0 +1h$: $t_0 +2h$]
2. $\text{max} \frac{dB}{dt} \geq 3$ nT/h during [t_0 : $t_0 +6h$]
3. $B_z < 0$ at t_0 or after the storm onset [t_0 : $t_0 +6h$]
4. The solar wind acceleration $\frac{dV_{sw}}{dt} > 5$ km/s/h during [t_0 : $t_0 +6h$]

The list of intense geomagnetic and ionospheric storms is decreasing in process of combining impact (1)+(2)+(3)+(4) of IMF and SW precursors.

VarSITI, Albena, Bulgaria, 6-10.06.2016
Occurrence of 457 SSCs during 1999-2015 for specified (1)-(4) precursors of IMF, SW and ICME; \(t_0 = 0 \) - time of SSC.

Red – SSC happens while IMF and SW precursors are missing: (1) - 111 SSC; (2) - 171 SSC; (3) - 4 SSC; (4) - 32 SSC.

Yellow – SSC associated with IMF and SW precursors. Green line – IMF and SW storm threshold.

Proportion of ICME and SSC events:
Green : ICME events without SSC
Yellow: ICME associated with SSC
Efficiency of IMF and SW precursors for the intense geomagnetic and ionospheric storms

n1 – number of storms-with-precursors (SSC, Dstmin ≤ −100 nT, AEmax > 1000 nT, positive TEC storm Vp > 50% and negative TEC storm Vn > 50%); n2 – Number of IMF and SW precursors and their combination

Efficiency factor: \(Ef = \frac{n1}{n2} \) (Eqn.2)

<table>
<thead>
<tr>
<th>Precursors</th>
<th>SSC to+12h</th>
<th>AE to+12h</th>
<th>Dst to+24h</th>
<th>Vp to+12h</th>
<th>Vn to+24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMF (\Delta B \geq 3) nT</td>
<td>0.213</td>
<td>0.105</td>
<td>0.064</td>
<td>0.247</td>
<td>0.114</td>
</tr>
<tr>
<td>(1) n2=1556</td>
<td>n1=332</td>
<td>n1=164</td>
<td>n1=100</td>
<td>n1=385</td>
<td>n1=172</td>
</tr>
<tr>
<td>dB/dt \geq 3) nT/h</td>
<td>0.212</td>
<td>0.164</td>
<td>0.119</td>
<td>0.248</td>
<td>0.133</td>
</tr>
<tr>
<td>(1+2) n2=226</td>
<td>n1=48</td>
<td>n1=37</td>
<td>n1=27</td>
<td>n1=56</td>
<td>n1=30</td>
</tr>
<tr>
<td>Bz<0</td>
<td>0.219</td>
<td>0.169</td>
<td>0.129</td>
<td>0.269</td>
<td>0.139</td>
</tr>
<tr>
<td>(1+2+3) n2=201</td>
<td>n1=44</td>
<td>n1=34</td>
<td>n1=26</td>
<td>n1=54</td>
<td>n1=28</td>
</tr>
<tr>
<td>(\Delta Vsw > 5) km/s/h</td>
<td>0.224</td>
<td>0.173</td>
<td>0.133</td>
<td>0.276</td>
<td>0.138</td>
</tr>
<tr>
<td>(1+2+3+4)n2=196</td>
<td>n1=44</td>
<td>n1=34</td>
<td>n1=26</td>
<td>n1=54</td>
<td>n1=27</td>
</tr>
</tbody>
</table>

1 line – condition (1); 2\(^{nd}\) line – combined conditions (1+2); 3\(^{rd}\) line – conditions (1+2+3); 4\(^{th}\) line – conditions (1+2+3+4) at IMF and SW
Conclusions

1. Analysis of ICMEs, IMF and SW precursors shows their limited predictive capabilities for the major geomagnetic and ionospheric storms.

2. Combined specification of geomagnetic activity with AE, aa, ap, ap(τ) and Dst indices with relevant thresholds is allowed referring to ICME events of three categories: (1) quiet conditions; moderate disturbance; and the major geomagnetic storm with relevant thresholds.

3. Percentage of false alarms for major Dst storms (Dstmin ≤ -100 nT) with ICME precursors is 81%, the AE storms (AEmax ≥ 1000 nT) is 67%, and the planetary TEC storms - 64%.

4. The intense ionospheric storms in positive storm phase (Vp) and/or negative storm phase (Vn) are derived from the global ionospheric maps GIM-TEC during 1999-2015.

5. Typical efficiency of IMF and SW precursors to induce the SSC events, major geomagnetic and ionospheric storms varies from 0.1 to 0.3 so the risk of false alarms can happen for the rest of the IMF and SW events.
Acknowledgements

GIM-TEC maps are provided by Jet Propulsion Laboratory at:
ftp://sideshow.jpl.nasa.gov/pub/iono_daily/
Geomagnetic AE, ap, and Dst indices are provided by WDC for Geomagnetism at:
http://wdc.kugi.kyoto-u.ac.jp/
Geomagnetic aa indices are provided by WDC for STP at RAL:
http://www.ukssdc.ac.uk/
The ICMEs Catalogue compiled by Ian Richardson and Hilary Cane is available at
The solar wind and IMF data are provided at OMNI web:
http://omniweb.gsfc.nasa.gov/
The geomagnetic SSC Catalogues is provided by WDC
The Ionospheric indices and Catalogues of storms are available at IZMIRAN web:
http://www.izmiran.ru/services/iweather/
http://www.izmiran.ru/services/iweather/storm/
This study is partly supported by TUBITAK EEEAG 115E915
Thank you!