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Abstract. The pathway idea is a way of going from one family of functions to another family of functions and yet another 
family of functions through a parameter in the model so that a switching mechanism is introduced into the model through 
a parameter. The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as 
well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation. The basic idea is 
illustrated for the real scalar case here and its connections to topics in astrophysics and non-extensive statistical 
mechanics, namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric functions and generalized 
special functions such as the H-function etc are pointed out. The pathway idea is available for the real and complex 
rectangular matrix variate cases but only the real scalar case is illustrated here. 
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Introduction  
Mathematical techniques in the area of special 

functions, statistical techniques in the area of statistical 

distribution theory and characterizations and 

information theory techniques in the area of 

generalizations of Shannon type entropies and their 

axiomatic definitions and properties had been 

developed by the first author in the period of time from 

1965 to 1980 [Mathai and Rathie (1975), Mathai and 

Pederzoli (1977), Mathai and Saxena (1978)]. Then 

starting from the 1980’s applications of these 

techniques to astrophysical problems were explored 

by the present authors jointly in the areas of energy 

generation, solar modelling, and gravitational 

instability problems. A summary of the findings until 

1988 is available from Mathai and Haubold (1988) and 

later results from Mathai (1993), Mathai and Haubold 

(2008), and Mathai, Saxena, and Haubold (2010). It 

was seen that interesting results, mathematically and 

statistically and with potential of physical 

interpretations, could be obtained by the fusion of 

special function theory, statistical distribution theory, 

and information theory. The present authors’ work in 

basic space sciences started in the 1980’s and then in 

1988 a sequence of United NationsWorkshops, 

prospectively co-organized by ESA, NASA and JAXA 

and hosted by individual nation states was 

conceptualized at the Centre for Mathematical 

Sciences,India (http://www.cmsintl.org/). 

For new results in mathematics and mathematical 

statistics, applications are usually found in sooner or 

later interplay with natural sciences and hence the 

vast amount of theoretical development that has 

been achieved, do not all have immediate 

applications. One sequence of results which are useful 

in pathway model building in physical situations based 

on experimentally recorded data was demonstrated 

recently [Haubold et al. (2012)] . An idea was 

introduced in the 1970’s by which one could go from 

one family of functions of mathematical or statistical 

nature to another family to yet another family, and 

later in 2005 [see Mathai(2005), Mathai and Haubold 

(2007)] the idea was extended to cover real and 

complex scalar mathematical or random variables, as 

well as real and complex rectangular matrix variables. 

The basic notion will be explained with the help of a 

specific example. Consider a general input-output 

type situation. It could be reactions generating or 

annihilating particles, diffusion and transport of 

particles and thereby an emerging product is what is 

observed. Consider particle reactions and let N(t) be 

the number density at time t and the rate of reaction 

denoted by 
dt

tdN )(
 [Mathai and Haubold (1988)]. If 

the number of particles produced is proportional to the 

original population size then the differential equation is 

)(.
)(

tN
dt

tdN
λ=  where λ denotes the rate of 

reactions [Saxena et al. (2010)]. Let the diffusion rate or 

destruction rate be µ then the residual rate is c = λ - µ. 

If production dominates then c > 0 and if destruction 

dominates then c < 0. Then for the model 

ct
eNtNtcN

dt

tdN −=⇒−= 0)()(
)(

 (1.1) 

where N0 is the initial population size. If the rate of 

change is proportional to a power of the population 

size and if decay dominates then the equation and 

the solution are the following: 
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      (1.2) 

 

This is a power law type of behavior. For α < 1 the 

function in (1.2) belongs to a particular case of a 

type-1 beta family of functions. Let N(t) in (1.2) be 

denoted by N1(t). For α  > 1, by writing 1 − α = −( α − 1) 

and denoting N(t) by N2(t), we have: 

1

1

])1(1[)( −
−

−+= αα tctN   (1.3) 

Here (1.3) is a special case of a type-2 beta family of 

functions. When 1→α , denoting N(t) by N3(t) in this 

case, 

ct

tt
etNtNtN −

→→
===

−+

)(lim)(lim)( 1
1

2
1

3  (1.4) 

This, in fact, is the model in (1.1). Thus, N1(t) and 

N2(t) for α < 1 and α  > 1 respectively describe a wide 

range of models. If the exponential form in (1.1) is the 

stable form in a physical situation then _ here can be 

called the stability parameter and N1(t) and N2(t) can 

describe the unstable neighborhoods of N3(t). 

Optimization of Entropy 
Models in physical situations are also constructed 

by optimizing entropy measures. The basic Shannon 

entropy in a probability scheme, for the continuous 

situation is 

∫
∞

∞−
−= dxxfxfkfS )(ln)()(   (2.1) 

where f(x) is a statistical density and k is a constant. 

When k is present, we can assume f(x) to be any 

non-negative integrable function, need not be a 

statistical density. S represents a measure of 

uncertainty in a probability scheme. If S(t) is maximized 

over all functional f satisfying the condition 

∫
∞

∞−
= 1)( dxxf  and f(x) ≥ 0 for all x then f is the 

uniform density. If (2.1) is maximized subject to two 

conditions  

(i): ∫
∞

∞−
= 1)( dxxf  and (ii): )(xE  is a given quantity, 

∫
∞

∞−
= dxxxfxE )()(  = the expected value or the 

mean value of x then we end up with f being an 

exponential density. With reference to the number 

density in (1.1)-(1.3) the second condition will imply 

that the expected number, E[N(t)] in a unity space in 

unit time is a fixed quantity which can also be 

interpreted as the principle of conservation of energy if 

we are dealing with energy generation. If, further, the 

second moment )( 2xE  is also fixed then we end up 

with the Gaussian or normal density. 

The basic entropy measure in (2.1) is generalized in 

different directions. A class of α-generalized entropies, 

their characterizations and properties are available 

from the book: Mathai and Rathie (1975). One of the 

α-generalized entropies, in the continuous case is 

2,1,
1

]1))(([
)(

2

≤≠
−

−
=
∫

∞

∞−

−

αα
α

α

α

dxxf
fM  (2.2) 

Consider the optimization of (2.2) subject to the 

conditions 

∫

∫
∞

∞−

−

∞

∞−

∞<=

∞<=

2

1

)(:)(

)(:)(

kdxxfxb

kdxxfxa

δγ

δ

 

where k1 and k2 are fixed, and optimizarion is done 

over all non-negative integrable functions, 1,0 == δγ  is 

the case leading to (1.1) to (1.3) or Tsallis statistics 

[Tsllis(1988)]. Consider the function g(f) over all 

functional f, where  

)()()]([)( 21

2
xfxxfxxffg

δγγα λλ
+− +−=  

where 1λ  and 2λ  are Lagrangian multipliers. Than the 

Euler equation is given by 

αδγ

δγγα

α

λλα

−

+−
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∂

∂

1

1

1

21
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0)(

xaxcxf

xxxf

fg
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 (2.3) 

where 
α

λ

−2

1
 is taken as 1c  and 

1

2

λ

λ
 is  taken as 

0),1( >− aa α . Note that (2.3) for 

0,0;0;1 >>>< xa δα  can be called an extended 

generalized type-1 beta model. For 1>α , writing 

)1(1 −−=− αα , (2.3) reduces to the following: 

0,0;0;1

,])1(1[)( 1

1

22

>>><

−+= −
−

xa

xxcxf

δα

αα αδγ

 (2.4) 

Note, that (2.4) can be called an extended 

generalized type-2 beta model. Denoting f(x) under 

1<α  as f1(x) we have 

δ
αγ

αα

x
excxfxfxf

−

→→
===

+−
32

1
1

1
3 )(lim)(lim)(  (2.5) 

which can be called an extended generalized 

gamma model. This is the entropic pathway. If )(1 xf , 

)(2 xf  of (2.3)-(2.5) are taken as statistical densities 

then c1, c2, c3 can act as the normalizing constants, 

which are available by integrating out in (2.3)-(2.5) 

respectively. 
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The model in (2.3) for generalized α  is the scalar 

version of the pathway model of Mathai (2005). This is a 

distribution pathway. Here α  is called the pathway 

parameter. When 1<α  than the model describes the 

whole family of functions belonging to extedded 

generalized type-1 beta family. When 1>α  then we 

move into the whole family of functions belonging to 

the extended generalized type-2  beta family. When 

1→α  then both these families go into the family of 

generalized gamma family. We can also look into the 

transitions in the correspondingdifferential equations. 

This is the differential pathway. Thus we have the 

following pathways [Mathai and Haubold (2007)]: 

• Entropic pathways 

• Distributional pathways 

• Differential pathways 

 

Note that (2.3) for 1;1;0;0 ===> ax δγ  is Tsaliis 

statistics of non-extensive statistical mechanics which 

works for all the cases of 1;0;0 →>< ααα . This 

particular case of (2.3) is also the model in (1.2). It is 

said that over 5000 articles are produced on Tsallis 

statistics so far since it was introduced in 1988 

[Tsallis(1988), see also Hamza(2005)]. It is also said that 

over 3000 people are working on this model giving 

various types of interpretations in various fields. 

Model (2.3) for 0;1;1;1 >==> xaδα  is known 

in the literature as superstatistics [Beck and 

Cohen(2003), Beck(2006)]. Note thet since 

superstatistcs assumes the functional form in (2.4) for 

1>α , from the superstaistics one cannot get (2.3). for 

1<α . In the family of pathway models, superstatistics 

is derived from the case 1>α  and 1→α  where as 

Tsallis statistics covers all cases 1;1;1 →<< ααα  

but te main restriction here is that 0=γ  or the factor 

γ
x  is absent in Tsallis model. In superstatistics 

γ
x  is 

presented but it covers only the type-2 beta ( 1>α ) 

and gamma ( 1→α ) families of functions and not 

type-1 beta ( 1<α ) families of functions. 

In the actual applications, x  could be time, energy, 

velocity etc and then the models can have different 

interpretations in different disciplines. 

Bayesian Procedure 
The model in (3.5) for a prefixed parameter a can 

be written as a conditional density of the type 
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Suppose that the parameter a has a prior density given 

by 
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where ε  and η  are known constants. Then the 

unconditional density of x  is given by 
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This (3.3) for x > 0 is the superstatistics. Note that for the 

convergence of the integral  
δ

η
x+

1
 must remain 

positive. Hence superstatistics can only produce type-2 

beta family of functions when considering gamma 

type conditional density for x|a and gamma type 

marginal density for a. When  η  is of the form  
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we have the pathway model for 1>α . The 

unconditional density of x in (3.3), denoted by )(xf x , 

can also be interpreted the following way:  a)|x(4f  is 

the density of x where a is a parameter. Then we are 

superimposing another density g(a) on the density 

a)|x(4f  and then the resulting density )(xf x  can be 

called superimposed statistics or superstatistics. 

Apparently when superstatistics was introduced they 

were unaware of Bayesian procedures in 

Probability/Statistics. In Bayesian procedure, 

superstatistics is the unconditional density of x when x 

and the parameter a, for which a prior density is 

assumed, both belong to gamma family of densities. A 

more general family of unconditional densities is 

available from [Mathai and Haubold (2007)]. Dozens of 

papers are published on superstatistics and it is being 

hotly pursued in different disciplines. 

Fractional Considerations 
Going back to our basic growth-decay problem 

where the rate of change is proportional to the 

population size, our basic differential equation, 

equation (1.1), is 

∫−=−⇒>−= dttfcftfctcfxf
dt

d
)()(0)()( 0

 (4.1) 

 

If the total integral is replaced by a fractional integral 

of the Riemann-Liouville type let us see what happens. 

The left sided Riemann-Liouville fractional integral 

operator is denoted by  
βα
xx ID 00 =−

 and it is defined as 
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Fractional integral can be given many interpretations 

in statistical literature as fraction of a total integral, as 

the density of residual variable yxu −=   where x  

and y  are independently distributed real positive 

random variables such that  0>− yx  etc [Mathai 

(2010)]. If the total integral in (4.1) is replaced by 

fractional integral of (4.2) then the equation becomes 

 

))(()( 00 xfDcfxf x

α−−=−   (4.3) 

 

where 0f  is a constant. One simple way of solving this 

equation is by taking Laplace transforms on both sides. 

Let the Laplace parameter be s. Let the Laplace 

transform of f  be denoted by )(
~

sf . Then 
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Taking the inverse Laplace transform we have 
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where (..)αE  is the basic Mittag-Leffler function. 

Generalization of the basic Mittag-Leffler function are 

the following: 
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where k)(γ  is the Pochhammer symbol 

0;1)();1)...(1()( 0 ≠=−++= γγγγγγ kk  

More generalized form of (4.5) is the Wright’s function, 

which is a special case of the H-function. More on 

the applications of these functions may be seen from 

[Mathai and Haubold (2008)], [Mathai et al. (2010)]. 

It is seen that when we move from a total 

differential equation to a fractional differential 

equation, Mittag-Leffler function and its generalizations, 

Wright function and H-function enter into the solutions. 

A series of recent papers are available on the solutions 

of fractional reaction equations and fractional 

reactiondiffusion equations. The Laplace transform in 

(4.4) belongs to a general class of Laplace transforms, 

see [Mathai et al. (2006)] and the various references 

therein, and various members from this general class 

appear when solving some fractional differential 

equations. Some of the papers may be seen from 

[Haubold et al. (2011)] and [Saxena et al (2010)]. 

The effects of power transformations and 

exponentiation on various models can be seen from a 

recent paper [Mathai (2012)]. Let us see what happens 

if a parameter is becoming larger and larger in a 

Mittag-Leffler model of (4.6). Suppose that _ is real and 
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it is becoming larger and larger. Then by using the 

asymptotic expansion of gamma functions or as a first 

approximation the Stirling’s formula 

zaz
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This is the pathway model, Tsallis statistics and 

superstatistics for the case 1>α  for  
1

1

−
=

α
γ , 

0;1;0);1( >>>−= δαα bba . For 1=γ , (4.7) 

becomes a power series. 

A Mathematical Perspective 
Mathematically speaking the whole process of 

transition from one functional form to another, Tsallis 

statistics, superstatistics and pathway models in the 

scalar case can be described as getting rid off some 

parameters from a hypergeometric series. Take for 

example a 11 F  series: 
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If we wish to get rid off an upper or lower parameter 

then we do a limiting process. 
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The binomial function going to the exponential 

function in (5.2) is the basis for the pathway idea, Tsallis 

statistics and superstatistics. Observe that a similar rich 

class of pathways are available from (5.3) where a 

Bessel function is going to an exponential function. All 

the above limiting forms are available by using the fact 

that 
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All these ideas are extended to the matrix-variate 

cases, to real positive definite, hermitian positive 

definite and to rectangular matrices, see the basic 

paper Mathai (2005), and later papers by the author 

and his co-workers are also available. One such model 

is the following: 

α

η
γ

α −−−= 121212121 )1()( AXBXAaIAXBXAcXf tt

     (5.5) 

 

where X  is a prrp ≥× ;  matrix of full rank p  of 

distinct real random or mathematical variables, A  is a 

pp ×  constant positive definite matrix, B  is a rr ×  

constant positive definite matrix, 
tX  denotes the 

transpose of X , 
21A  denotes the positive definite 

square root of the positive definite matrix A , )(Xf  is 

a real-valued scalar function of X  and c is a constant. 

This c can act as a normalizing constant if )(Xf  is 

treated as a statistical density. If the matrix X  is 

relocated at some other matrix M then replace X  by 

MX − in the model. The constants  0,0 >> aη  and  

α  are real scalars where α  is the pathway parameter. 

For 1<α the model in (5.5) will stay in the generalized 

real matrix-variate type-1 beta family of functions. 

1>α  the model in (5.5) will go to the generalized real 

matrix-variate type-2 beta family of functions. When 

1→α  both these type-1 beta and type-2 beta 

families will go to a generalized matrix-variate gamma 

family of functions. This can be seen by using the result 

 

)}tr(.exp{
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1
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AXBXAaI

t

t

η

α α

η

α

−=

=−− −
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where tr(..)  denotes the trace of (..). It can be seen 

that all the real matrix-variate densities that are used in 

the current literature are available from the model (5.5) 

for various values of the pathway parameter α . A 

similar rich family is there if we consider the transition 

from a Bessel form to the exponential form. Model, 

corresponding to the one in (6.4), is available when the 

variables are in the complex domain also. The results 

are parallel. 
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