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Abstract. The generation and further dynamics of planetary ULF waves are investigated in the rotating dissipative 
ionosphere in the presence of a smooth inhomogeneous zonal wind (shear flow). Planetary ULF waves appear as a result of 
the interaction of the medium with the spatially inhomogeneous geomagnetic field. An effective linear mechanism 
responsible for the intensification and mutual transformation of large scale magnetized Rossby type and small scale 
inertial waves is found. For shear flows, the operators of the linear problem are not self-adjoint, and therefore the 
eigenfunctions of the problem maybe non-orthogonal and can hardly be studied by the canonical modal approach. Hence 
it becomes necessary to use the so-called nonmodal mathematical analysis. The nonmodal approach shows that the 
transformation of wave disturbances in shear flows is due to the non-orthogonality of eigenfunctions of the problem in the 
conditions of linear dynamics. Using numerical modeling, it is illustrated the peculiar features of the interaction of waves 
with the background flow as well as the mutual transformation of wave disturbances in the ionosphere.  
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Introduction  
For studying the dynamics of large-scale planetary 

processes in the ionosphere it is necessary to take into 

consideration the inhomogeneous and non-stationary 

properties of a wind process, a turbulent state of the 

lower ionosphere and the influence of inhomogeneous 

electromagnetic forces. These factors, which are 

especially strongly pronounced because of a low 

density of the medium in the ionosphere and a 

relatively high conductivity of the ionospheric gas, may 

cause essential deflections of the real wind (usual 

Rossby planetary wave) from geostrophic motion. 

Hence the general ionospheric circulation has certain 

peculiarities that are not observed in the conditions of 

the troposphere.  

The action of a geomagnetic field leads, on the 

one hand, to the inductive damping of Rossby type 

planetary waves, which is connected with Pedersen or 

transverse (relative to a magnetic field) conductivity, 

and, on the other hand, to the gyroscopic effect 

caused by the Hall conductivity of the ionosphere and 

having an impact on disturbances like the Coriolis 

force. As a result of the joint action of the spatially 

inhomogeneous Coriolis force and the electrodynamic 

(connected with the geomagnetic field) force,. in the 

ionosphere there may exist a new type of waves which 

physically differ from the usual Rossby wave and which 

are called magnetized Rossby  or Rossby type waves.  

Observations (Gossard and Hooke, 1975; Pedlosky 

1978) show that the atmospheric and ionospheric 

layers always have spatially inhomogeneous zonal 

winds (shear flows) produced by a nonuniform heating 

of the atmospheric layers by solar radiation. In this 

connection, it becomes important to investigate the 

problem on generation and evolution of usual and 

magnetized Rossby waves at their interaction with the 

inhomogeneous zonal wind (shear flow).   

The canonical (modal) investigation of linear wave 

processes (spectral expansion disturbances with 

respect to time followed by analysis of the 

eigenvalues) in shear flows does not take into account 

a highly important physical process, namely, the 

mutual transformation of wave modes (Graik, 

Criminale 1986; Trefethen et al. 1993).  

A strict mathematical description of the 

peculiarities of shear flows revealed (Trefethen, et al. 

1993) that in the case of canonical (modal) analysis of 

linear processes the operators figuring in dynamic 

equations are not self-conjugate (Graik, Criminale, 

1986) and, as a result, the eigenfunctions of the 

problem are not orthogonal to each other – they 

strongly interfere with each other. Thus, for a correct 

description of phenomena it becomes necessary to 

carry out accurate calculations of effects of the 

interference of eigenfunctions, which sometimes turns 

out to be the problem of insurmountable difficulty.    

There also exists another so-called nonmodal 

analysis of linear processes in shear flows. With this 

approach, the modified initial problem (Cauchy  

problem) is solved by tracing the evolution of spatial 

Fourier-harmonics (SFH) of wave disturbances in time 

and not using  any spectral expansion with respect to 

time (Reddy, Schmid, Hennigson, 1993; Chagelishvili, 

Rogava, Tsiklauri 1996). Being an optimal “language”, 

the nonmodal approach much simplifies a 

mathematical description of the dynamics of shear 

flow disturbances and makes it possible to reveal the 

key phenomena (caused by the nonorthogonality of 

linear dynamics) which have escaped the notice in 

the case of modal analysis.  
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In this paper we investigate the linear evolution of 

Rossby type waves in shear zonal flows (winds) in D, E, 

and F-regions of the ionosphere. In dynamic equations, 

the disturbed magnetohydrodynamic values are 

represented through SFH. This corresponds to 

nonmodal analysis in the coordinate system which 

moves with the background wind. This spatial Fourier 

expansion allows us to replace, in the basic equations, 

the spatial inhomogeneity connected with the 

inhomogeneity of the basic zonal flow by the time-

dependent inhomogeneity and to trace how the SFH 

of disturbances evolved in time. 

 Initial equations and the basic principles of 
nonmodal analysis  

In this paper we are interested mainly in large-scale 

(planetary) wave motions in the ionospheric medium 

(consisting of electrons, ions and neutral particles), 

which have a horizontal linear scale hL  of order 310  km 

and higher, a vertical scale vL of altitude scale order 

0H  ( 0v HL ≈ ) and a time scale τ of half-day order 

and higher. It is such motions that are connected with 

global distributions of the ionospheric structure and its 

large-scale daily, seasonal, 27-day and other 

variations. According to experimental data (Gossard 

and Hooke, 1975; Pedlosky 1978) in ionospheric large-

scale motions the relation of the characteristic vertical 

velocity vV  to the horizontal one hV  is small: 

.10L/LV/V 2
hvhv

−<≤  The latter relation implies that 

large-scale motions in the ionosphere are mostly quasi-

horizontal. The dynamic properties of such a medium 

are defined by the neutral component because of the 

fulfillment of the condition 1N/N ni,e <<  (where 

nie N,N,N  are the concentration of electrons, ions and 

the neutral component, respectively). The presence of 

charged particles makes the considered medium 

electroconductive.  

In the light of the above reasoning, the basic 

properties of a Rossby type planetary wave in the 

ionosphere better to considere the equation for the 

horizontal velocity )V,V( yx⊥V  as initial one, where 

acceleration is defined by the pressure gradient, 

Coriolis force, volumetric electrodynamic force and 

viscous friction (Dokuchaev, 1959; Gossard and Hooke, 

1975; Pedlosky 1978).   

The geomagnetic field )B,B,B( z0y0x00B  is dipolar 

and in the chosen coordinate system has the following 

components (Dokuchaev, 1959): 

θ′−== sinBB,0B ey0x0 ,   θ′−= cosB2B ez0 , 

where 
5

e 105,3B −×≈
Tesla (T) is the value of  

geomagnetic field induction at the equator. In this 

case, the total induction of the geomagnetic field is 

( )
2/1

2
e0 cos31BB θ′+=

, while 
ϕ′ϕ′−π=θ′ ,2/

 is the 

geomagnetic latitude. In the same coordinate system, 

the components of the angular velocity vector of the 

Earth’s rotation  
( )ozoyox0 ,, ΩΩΩΩ

 can be written as                 

           
θΩ=ΩθΩ=Ω=Ω cos,sin,0 0z00y0x0  .             

It is assumed that the geographical and 

geomagnetic latitudes ϕ  and ϕ′  coincide 

),( θ′=θϕ′=ϕ  and disturbances occur in the 

neighborhood of the latitude 00 2/ θ−π=ϕ . Further, 

system (2.1)–(2.5) is linearized against the background 

of a plane zonal shear flow (wind) :0V  for hydrodymic 

velocity ,)y,x(0 VVV ′+=  for medium density 

)y,x(0 ρ′+ρ=ρ and for preasure )y,x(PPP 0
′+= , where 

the values with a prime are the disturbed ones, while 

the mean (background) values have the sub-index 

zero (for simplicity, in the sequel we omit the prime of 

the perturbed values). Thus the initial system of 

equations for large-scale small (linear) disturbances 

can be written in the form   
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To proceed with our analysis of the peculiar 

properties of a magnetized Rossby wave in the 

ionosphere, it is convenient to introduce the 

coordinate system with the moving axes ,YOX 111  whose 

origin 1O  and 1Y -axis coincide with their counterparts 

of the equilibrium local system XOY , while the 1X -axis 

moves together with the undisturbed (background) 

flow. For our problem, this is equivalent to the 

replacement of the variables 

,tt,yy,aytxx 111 ==−=  or to   
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In the new variables, the initial equations take the form: 
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The above replacement of the variables does not 

mean that we have physically passed over to a new 

counting system, since the values P,V,V yx  in the initial 

equations are equivalent to the velocity and pressure 

components of wave disturbance in the Cartesian 

system XOY . The coefficients of the initial system of 

linear equations depended on the spatial coordinate 
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y . The above mathematical transformations have 

changed this spatial inhomogeneity for time 

inhomogeneity. Thus the coefficients of system have 

become independent of the spatial variables 11 , yx  

and we are able now perform Frourier analysis of these 

equations with respect to the spatial variables ( )11, yx , 

and consider the time evolution of these SFH 

separately:  
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From initial equation (4)-(6), substituting the notations 

⊥=Ω Vzrot  and ⊥=ξ Vdiv and passing to dimensionless 

variables and parameters, after some transformation 

for each SFH  we will have: 
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             δξ−=
τ∂

∂P
.                                                     (9) 

In the space of wave numbers, the density of total 

energy of wave disturbances, have the form  

 
δ

+
τ

ξξ
+

τ

ΩΩ
=

∗∗ *

22

PP

)(k)(k
]k[E , where the asterisk 

denotes the complex  conjugacy.  

Thus, the density of total energy of wave 

disturbance consists of three parts, where the first term 

is the energy of the vortical part of disturbances, 

)(kE 2
v τΩΩ= ∗ ; the second term  is the compressible 

part of the energy, ( )τξξ= ∗ 2
c kE ; the third term is the 

elastic (potential) energy (due to disturbance 

elasticity), δ= ∗ /PPEe . In the absence of a shear flow 

)0S( = and dissipative processes )0,0( =σ=ν ⊥ , the total 

energy density  of the considered wave disturbances  

in the ionosphere preserves its value 0)(E =τ∂τ∂ . 

We carried out the numerical solutions and 

experiments of (7)-(9) equations for different values of 

the medium and wave parameters the following 

features were revealed.  

Analysis of numerical experiments 
In this paper we want to discuss the mistake made 

in describing the evolution of Rossby type waves in the 

presence of zonal shear flows. 

Intensification.  

At the initial time moment, only the low-frequency 

planetary Rossby wave with a large value of the 

meridianal wave vector 150k)0(k),0(k xyy >>=  and 

,0,1,8.0S,1.0 =ν=δ==β  ,1P,100)0(k,2k 0
1yx ===  was 

excited. When 1k)0(k xy >> , the Rossby wave is mainly 

vortical and practically incompressible. In the 

incompressible stage, wave excitations may absorb 

the background flow energy only if xy k)(k ≈τ . Indeed, 

due to the linear drift, )(k y τ decrease with a lapse of 

time, but for ( ) xy kk >>τ  the energy exchange 

between the background flow and the SFH of the 

Rossby wave is not essential. For times when already 

xy k)(k ≈τ  the SFH of the Rossby wave actively absorbs 

the shear energy and gains in intensity, i.e. the SFH is 

now in the region of intensification. The SFH 

intensification stops at the time moment 0)(k y =τ∗ . 

Then, for ( ) 0kk xy <τ  or in a time interval 1τ≤τ<τ∗ , it 

begins to give back some part of the energy to the 

mean flow (see figure 1).  

Transformation.  

With the evolution of the initial excitement, the 

share of the vortex component in the total energy 

keeps decreasing until it becomes negligibly small (for 

80~2τ ) and a greater part of the Rossby wave energy 

is pumped into the energy of inertial waves. Thus the 

Rossby wave transforms to inertial waves. The total 

energy and the SFH now have high-frequency 

oscillations. Thus, if for 0=τ  the energy is concentrated 

in vortical low-frequency modes (Rossby waves), for 
∗τ>>τ  the whole energy is concentrated in potential 

high-frequency disturbances, i.e. in inertial waves. 

Transformation of Rossby type waves to inertial ones 

starts from the moment ∗τ=τ  and goes on within a 

limited time interval in which the conditions of 

transformation are fulfilled and these two branches get 

interconnected.  A greater part of the Rossby wave 

energy undergoes transformation. It can be said that 

by the time moment 1τ=τ only the (inertial) wave 

remain in the flow. With a lapse of time, the latter wave 

intensifies by absorbing the shear energy.  

Damping of large-scale wave disturbances in 
the shear flow 

As has already been mentioned, in the shear flow 

we observe the SFH drift in the space of wave 

numbers. Thus, with a lapse of time, the radial 

component of the SFH wave vector  ( ) ( ) τ−=τ xyy Sk0kk  

increases, i.e. the disturbance length decreases along 

the meridian (for ( ) 0k2, yy →τπ=∞→τ l ). Usually, in a 

solid medium the subdivision of scales takes place at 

the expense of nonlinear processes. However in our 

case a monotone decrease of disturbance scales 

occurs in the linear regime. For short-wave 

disturbances, the influence of dissipative processes 
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(viscosity in our case) is essential. Due to dissipation, the 

disturbance energy is transferred in the form of heat to 

the medium and, eventually, a practically complete 

damping of wave disturbances takes place. 

Therefore the pumping of shear flow energy to the 

wave perturbation energy and the mutual 

transformation of modes followed by their dissipation in 

the medium are permanent processes, which may to a 

strong heating of the medium. It is obvious that the 

heating intensity depends on the initial disturbance 

level and the shear flow parameter S . 

Conclusion  
In this paper we investigate the linear stage of the 

evolution of SFH of a magnetized Rossby wave and 

inertial wave disturbances in the dissipative ionosphere 

in the presence of a shear flow (smooth-

inhomogeneous zonal wind). Based on the numerical 

solution and theoretical analysis of the corresponding 

system of dynamic equations, new mechanisms are 

found, which account for the pumping of shear flow 

energy to wave disturbance energy, an extremal 

intensification (by several orders) of waves, the mutual 

transformation of eigenmodes and the conversion of 

perturbation energy to heat.  

The intensification of a magnetized Rossby wave 

and an inertial wave may take place for certain values 

of the parameters of the medium, shear and waves. 

This makes an unusual way of shear flow heating in the 

ionosphere: waves draw up the shear flow energy and 

pump it through the mutual linear transformation and 

linear drift of SFH in the space of wave numbers 

(subdivision of disturbance scales) to the damping 

domain. Finally, the viscosity and inductive damping 

convert this pumped energy to heat. The process is 

permanent and may lead to a strong heating of the 

medium. The heating intensity depends on the initial 

disturbance level and shear flow parameters.  

A remarkable feature of a shear flow is the 

diminution of wave disturbance scales in the linear 

stage, which is due to a linear drift of disturbance SFH 

in the space of wave numbers and, accordingly, to 

the pumping of energy to the dissipation region (with 

short  scales).   

The intensification of wave disturbance SFH and the 

mutual transformation of modes take place within a 

limited time interval (transiently) as long as the 

corresponding conditions of intensification and a 

sufficiently strong interconnection of modes are 

fulfilled.  

The mutual transformation of eigenmodes (of 

Rossby and inertial waves) may take place even in the 

spatial-homogeneous ionosphere ( const0 =ρ ), when 

the background wind velocity is inhomogeneous. We 

should emphasize the fact that this transformation 

mechanism was revealed in the framework of 

nonmodal mathematical analysis (these processes 

were not taken into account in the case of a more 

traditional modal approach).  

The character of the wave transformation 

mechanism considered in this paper is essentially 

different from the previously known linear mechanism 

of wave transformation in the inhomogeneous plasma 

(Erokhin, Moiseev, 1973). The transformation of waves in 

the case of medium density inhomogeneities takes 

place in a limited space (across the density 

inhomogeneity) as long as this inhomogeneity exists, 

while in our case the transformation of linear waves 

occurs throughout the shear flow volume but in a 

limited time interval (transiently). It is obvious that for 

this phenomenon to take place it is necessary that at 

least two wave modes would exist in the medium.  

The effect of the revealed mutual transformation of 

Rossby type waves and inertial waves in the 

ionosphere with an inhomogeneous zonal wind makes 

us revise some notions existing in dynamic meteorology 

and in the models of general circulation of the 

atmosphere, ocean, ionosphere and magnetosphere 

with the participation of Rossby type planetary waves. 

This especially concerns the interpretation of 

experimental and observation data, when it is 

necessary to take into account a possibility of mutual 

transformation of waves with different time and spatial 

scales in shear flows.  

The presence of the electromagnetic 

pondermotive force, i.e. of an inhomogeneous 

geomagnetic field, Hall and Pedersen currents in 

different ionospheric layers increases the effectiveness 

of interaction and energy exchange between wave 

disturbances and the background shear flow.  

  

Fig. The time dependence of the total SFH energy  
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