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Abstract. The prediction of the solar activity is very important and a lot of methods for the solar activity forecasting 
were developed because of their high relevance. Regardless of the advance in the application of physical methods for the 
purpose of forecasting, the results are very inconsistently spread and substantiate the application of statistical methods. 
In this paper using the annual sunspot number (SSN) data set for the time period of 1749 till 2010, an autoregressive 
model was developed, based on the Box-Jenkins methodology. A model of ninth order was obtained. Forecasts of the solar 
maximum and the moment of its expectation were calculated starting from 2006 up to 2010, with the data endpoints of 
2005 and 2009 respectively. All obtained SSN maxima are in the range from 110 down to approximately 90. The moments 
when the maxima are reached increase from 2011 up to 2013 with the duration of the unexpectedly long solar minimum. 
Both forecasts using data up to 2009 and 2010 are very close to each other. It is expected that the SSN in the maximum in 
2013 will be about 90. However the confidence band is very wide. The limits at the significance level of 0.1 are about 
+77/-53. The prognoses errors rapidly increase with the increasing prediction horizon. Therefore the reasonable 
prediction horizon is strongly limited to two to three years. For greater prediction intervals the errors are non-
acceptable. This statement is in good agreement with the findings of Rozelot’s study on the dynamical properties of the 
sunspot time series, that the accurate forecasting over a period of time longer than 2 to 4 years seems impossible.  
 
© 2012 BBSCS RN SWS. All rights reserved  

Keywords prediction of the solar activity, statistical methods, autoregressive model 

Introduction 
The solar activity forecast of the next solar cycle is 

important for satellite drag, telecommunication 

outages and hazards in connection with the 

occurrence of strong solar wind streams producing the 

blackout of power plants. Also for manned space 

flights the prediction of the radiation risk is a 

requirement for a successful mission. High powerful 

radiation can lead to computer and computer 

memory upsets or failures.  

As an indicator of the solar activity usually the 

sunspot number (SSN) is taken. It’s prediction plays a 

crucial role also in the climate debate, where some 

believe that the climate change is dominated by solar 

variations including the modern industrial time and that 

the next solar cycles will be very similar to the Maunder 

Minimum (Schatten and Tobiska, 2003). Long solar 

cycles are the Gleissberg Cycle, de Vries Cycle (also 

called Suess Cycle) and Hallstatt Cycle (Bonev, Penev, 

Sello, 2004). These cycles are quasi cycles with periods 

of approximately 70-100, 150-230 and 2200-2400 years, 

respectively. Some researchers expect a deep 

minimum by coincidence of different long solar cycles 

minima during the next solar cycles. The study of long 

period solar activity cycles have shown that the 

Gleissberg cycle has a wide frequency band with a 

double structure consisting of 50–80 years and 90–140 

year periodicities. The cycle known as the de Vries 

cycle is less complex showing a variation with a period 

of 170–260 years (Ogurtsov et al., 2002). The periods 

and amplitudes are very different from cycle to cycle 

and therefore the occurrence of the 

maximum/minimum is not predictable by simple 

multiperiod analysis. Kane pointed out that the a 

simple extrapolation, especially of short cycles (less 

than _100 years) during the present transient epoch of 

the 2200–2400 year cycle for solar activity prediction, is 

a risky procedure (Kane, 2008 ).  

The solar cycle prediction methods can be 

classified in two basic categories (Hattaway, Wilson, 

Reichmann, 1999). The first one comprise regression 

techniques (including auto-regressive methods, neural 

networks and curve fitting) and the second one 

include different precursor techniques (a combination 

of sunspot indicators and geomagnetic field indicators 

(see also Baranovski, 2008). The last methods do not 

have a physical basis. Newer predictions are made 

with the help of magneto-hydrodynamic models, 

which describe the development of the solar activity.   

Pesnell summarized more than 50 predictions of the 

solar cycle 24 (of its amplitude Rn – where R is the SSN 

and n the solar cycle number - and its occurrence in 

time for different categories (Pesnell, 2008). It is obvious 

that the predictions based on dynamo models, on 

recent climatology forecast, on neural networks and 

predictions using geomagnetic precursors are in the 

range of approximately 130-145 and significantly 

higher than the mean amplitude of 112 (see Tab.1 in 

Pesnell, 2008). In contrast, the predictions obtained 

with the help of the past climatology, spectral methods 

or solar precursors, give amplitudes or activities 

somewhat lower than the mean value. Some of the 

cited predictions have already failed because the 

predicted expected moments of the maximums are 

over (to date 15 of the predictions). The predictions of 
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the sunspot maximum time are very questionable due 

to the long unexpected solar minimum.  Another 

summary of 45 solar activity forecasts was given by 

Janssens (2006) with the last update from Februar 2009. 

He outlined a strong divergence between the 

statistical and more physically oriented approaches. By 

statistical methods the results are in average mostly for 

strong cycle, whereas by the physically based ones 

(where the prognoses of Dikpati and Hathaway where 

excluded), weaker cycles are obtained. The difference 

between the conclusions drawn in the Pesnell’s 

summary and this of Janssens’s is coming from the fact, 

that in the last one the statistical method neural 

network and spectral methods and prediction on 

auto-regression where included in only one category. 

An overview of the different solar activity prediction 

methods can be found e.g. in Kane (1997), Hattaway, 

Wilson, Reichmann (1999), Cameron and Schüssler 

(2006), Schüssler (2007), Kane (2008), Hathaway (2010).  

A method to predict not only the occurrence and 

amplitude of the solar cycle maximum, but also its 

period length was worked out by Hiremath (2006).   

The NOAA and NASA panel consensus prediction of 

the 24 solar cycle 
(http://www.swpc.noaa.gov/SolarCycle/SC24/index.html) 

was very much changed in time. The predictions 

enclose the amplitude of the sunspot maximum and 

the date of the maximum.   

In March 2007 the NOAA and NASA panel was split 

and predicted the solar cycle to reach a peak sunspot 

number of 140 in October, 2011 or a peak of 90 in 

August, 2012 

(http://www.swpc.noaa.gov/SolarCycle/SC24/Statem

ent_01.html ). In May the prediction was revised - the 

Solar Cycle 24 will peak in May 2013 with 90 sunspots 

per day, averaged over a month 

(http://www.swpc.noaa.gov/SolarCycle/SC24/index.html).  

The march 2011 update 

(http://solarscience.msfc.nasa.gov/predict.shtml) gives 

a smoothed sunspot number maximum of about 58 in 

July of 2013 and states that we are currently two years 

into Cycle 24 and the predicted size continues to fall. 

Regardless of the advance in the application of 

physical methods for the purpose of forecasting, the 

results are very inconsistently spread and substantiate 

the application of statistical methods. 

Some historical aspects 
Yule in 1927 was the first using the method known 

today as auto-regression technique to describe the 

yearly sunspot number series, introduced in 1848 by the 

Swiss astronomer Johann Rudolph Wolf (Yule, 1927). 

Yule used the more realistic sunspot data from 1749 up 

to 1924. The data are reliable since 1848, questionable 

from 1749-1817 and are characterized as poor during 

1700-1748 (Eddy, 1976).  Yule solves the homogenous 

second difference equation, 2211 −− += ttt xxx ϕϕ
 where xt 

are the mean removed sunspot numbers for the year t. 

The equation describes a damped harmonic oscillator, 

if the roots of the characteristic equation of (1) are 

conjugated complex. Yule determined the constants 

1ϕ  and 2
ϕ  to be means of ordinary least square 

estimations and he found 34254.11 =ϕ , 65504.02 −=ϕ ; 

the root of the mean squared deviation of tx
 from the 

original sunspot values was determined and the value 

of 15.41 was found. The sunspot numbers (in the 

original Yules work called Wolfer’s sunspot number, to 

honor of the  student and later successor of Wolf at the 

Zürichs observatory) are not absolutly the same as the 

sunspot number used today from Zürich, collected 

since 1979 at the Sunspot Influences Data Analysis 

Centre (SIDC) at the Royal Observatory of Belgium.  

Walker generalized Yules approach proposing 

autoregressive (AR) model and involved it in 

atmospheric data 

(http://en.wikipedia.org/wiki/Walker_circulation) leading 

him to discover the Walker circulation. After Yule many 

scientists have made attempts to improve the 

description of the sunspot time series as pure AR(p)-

model or ARMA(p,q)-models of different order p and 

q. Some results were summarized by Mc Leod and 

Hipel (1977).  Moran (1954) pointed out that to better 

describe the asymmetry development of the sunspot 

cycles, a model of higher order than ARMA(2,0) is 

need. He established a strong increase of the 

prediction error with rising of the prediction horizon. The 

coefficients of the developed autoregressive models 

to describe the solar activity depend on the used data 

period. In the following we use the yearly SIDC sunspot 

number data (http://sidc.oma.be/sunspot-data/) to 

construct an ARMA model based on the Box-Jenkins 

method including the 23th solar cycle data, and 

beginning at 1749.  

AR(p)-model 
The time series value, observed at equidistant 

moments t in an autoregressive model is the weighted 

sum of the previous ones.   

t

p

i

itit uxx ++= ∑
=

−

1

ϕµ  ,      t=1,…..,n                      (1) 

where the moments t was numbered from 1 to n,  µ is a 

constant and the residual ut  presents a white noise 

process and p determines the order of the 

autoregressive process.  The white noise term holds the 

assumptions of the cross-sectional regression, the mean 

of the error are zero, the variance is constant and 

correlations between the residual and itself and also 

between variables xt-i and the residual ut do not exist. In 

contrast xt is defined by a weak stationary process, in 

other words the mean expected value of x is µ, the 

variance  σ2 of the series xt is constant and does not 

depend on time (that is to say the series is 

homoskedastic) and the autocorrelation depends only 

of the lag (e.g. Box and Jenkis, p.26, ). These 

assumptions implicate that time series shows not have 

a trend.  In some cases it is also necessary to de-

seasonalize the time series before it’s description with 

an autoregressive model.  The structure of the 

regressive equation, where the value at the time t are 
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determined by the past observations, is predestined for 

forecasts, because the future value at the moment 

t+1, is defined by the preceding p time-series values. 

Using the original data xi and the back transformed 

values ix̂ the residuals εi and the standard deviation σ 

can be calculated easily.  Not measured values at the 

time point n+1 can be estimated from the last p values 

of the time series:  

pnpnnn xxxhxx −−+ +++== ϕϕϕ ...)(ˆˆ
1211 .         (2) 

The prediction values are determined, besides from the 

model (in the case of an AR -model), also by the last p 

data, called for this reason pivotal values. The 

forecasted value 1
ˆ

+nx  is often denote by x(h) and h is 

referred as prediction horizon. By means of the 

estimated future value )(ˆ hx  , the next future 

value 2
ˆ

+nx  can be determined:   

)1(21 ...)(ˆ)2(ˆ
−−+++= pnpn xxhxhx ϕϕϕ .         (3) 

In this way it is possible to estimate successively m 

forecast values )(ˆ mhx . The forecast series )(ˆ mhx is 

named prediction profile. It can be shown that the 

prediction values asymptotically converge to µ with 

increasing prediction horizon (Thome, 2005).  

To obtain a measure of the quality of the forecast, 

forecast values can be calculated with the first p 

values  

11211 ...)(ˆ xxxhx pppp ϕϕϕ +++= −+ .             (4) 

In an analogous manner 2
ˆ

+px  can be estimated 

using the values from xp+1 till x2 and so on. Of course, 

values which are not observed, can be calculated by 

forecasting of the reverse time series or by setting to 

zero. By means of the forecast estimation 1)(ˆ
+phx  and 

the p-1 last measurement values the future data 

2)2(ˆ
+phx  can be obtained. Then the residual for a 

determined prediction horizon kh is determined from 

the difference of the observed value xi and its 

estimation ix̂ : 

 iii khxxkh )(ˆ)( −=ε .                        (5) 

The forecast quality can be estimated then by the 

sum of the square residuals εi
2 and by the mean 

standard deviation:   

∑
++=

−
′−−

=
n

hpi

ii khxx
ppn

kh
1

2
))(ˆ(

1
)(σ ,      (6) 

where n is the number of the observations, p represents 

the order of the AR model and p’ is the number of 

used coefficients to estimate and kh is the prediction 

horizon.  

Model identification  
It is well known that the sunspot number time series 

is not a strong periodic process. The period length 

varies from cycle to cycle. The 23th cycle was one of 

the longest cycles with a very wide minimum. By 

inspection of the plot of the yearly sunspot number as 

a function of the time is observed that the time series is 

not stationary. The series can easily be split in parts, 

where the solar activity is lower or higher during some 

subsequent solar cycles (see Figure 1). As the 

beginning of an interval was use a sunspot minimum 

and the part is ending just before a minimum. For every 

part the arithmetic mean and the standard deviation 

of the sunspot numbers were calculated. As it is clearly 

shown at Figure 2, the standard deviation found 

increases linearly with the means of higher sunspot 

numbers indicating a multiplicative time series model 

(Schlittgen and Streitberg, 2001, p 11).  
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Fig.1. The development of the solar activity is displayed indicated 
by the sunspot number from 1749 up to 2010.  The series was 
separated in some parts and the mean value and the standard 
deviation for these intervals are specified. 

 

Fig.  2. Dependences of the standard deviations of the mean 
sunspot numbers for the different time intervals (see Figure 
1.) 

A logarithmic transformation transfers the model in 

an additive model again. During the Dalton Minimum 

in 1810 a SSN value of zero was observed. To 

overcome this problem a constant can be added to xt  

and after this the log-transformation can be carried 

out. However the inverse transformation is more 

complex because the dispersion function of the 
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original and the transformed series are not the same 

and prediction values and the prognoses errors have 

to be corrected also (Granger and Newbold, 1976; 

Pankratz 1991). McLeod (1977) compared different 

models including a multiplicative AR model and 

showed that a AR(9) model is to be preferred, but no 

forecasting was performed. Tests to made forecast 

using the log-transformation have shown that the 

prediction errors after the inverse transformation are 

non-acceptably high. Therefore a simple square root 

transformation was used. It is obvious in figure 3 that 

the square root transformed time series is not fully 

homoskedastic but it is also well known that the Box-

Cox square root transformation remove the 

heteroskedasticity in satisfactory manner and save the 

normality of the residuals. 
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Fig. 3. The square root transformed Sunspot number time series 
and its linear trend. 

The square root transformed SSN time series was 

detrended and the autocorrelation function was 

determined (see Figure 4). This way the estimated 

autocorrelation function (EACF) was found. The EACF 

displays a behavior like an aperiodic oscillation. The 

values after lag 9 of the estimated partial 

autocorrelation function (EPACF) are not significant. 

The EACF and PEACF (both calculated with the 

Statistica 6 program) indicate characteristics typical for 

an AR process of 9th order.   

Determing the model parameters and 
evaluation of the model 

The p constants of the AR-equation (1) φ can be 

determined in different ways. First, is it possible to do 

this by the recursive solution of the Yule-Walker (e.g. 

Thome, p. 90 ) equation, related to the first p 

autocorrelation coefficients. The second way for the 

determination of the constants φ in principle consists in 

the interpretation of equation (1) аs a linear regression 

problem, which can be solved by a lot of standard 

methods, minimizing the mean squared errors. Using 

the original data set publicised in the Yule’s work 

without performaing the Box-Cox transformation on the 

base of the Yule Walker equation for the AR(2) model, 

the constants were found as  φ1 = 1.3398   φ2 = -0.6505. 

These values are in very good agreement with the 

values noticed by Yule: φ1 = 1.3425 φ2 = -0.6550. 

Applying the detrended and square root 

transformated sunspot number SIDC data set from 1749 

up to 1924, we found  φ1 = 1.3571 and φ2 = -0.6601, very 

close values to these from Yule as well as.  

To determine the AR model parameter, Statistica 6 

programme was used. The estimation method in this 

software maximized the likelihood of the data. The 

McLeod and Sales approximation was used. The 

resulting parameters of the AR(9) model of the 

detrended square root transformed SSN data from 

1749 up to 2010 are summarized in the table 1. 

(Parameters of other models were calculated 

including moving average as well, however no 

significant differences were found).   The constant µ 

was not estimated, because the series was detrended 

before the AR model parameters were determined.  

Four of the autoregression parameters are significant, 

highlighted in the table 1. The constant φ4 is very 

close/near at the significance level of 0.05. 

The residuals for kh=1 were determined using 

equation 5 and the fit to a normal distribution is shown 

in figure 4 together with the results for the tests of 

normality. By the three tests, the Kolmogorov-Smirnov, 

the Liliefors and the Chi-squared test, the hypothesis of 

normality cannot be rejected and as mentioned 

above the Cox-Box transformation really saves the 

normality of the residuals. Moreover the residuals are 

not auto-correlative, as displayed by the 

autocorrelation function of the residuals shown at 

figure 5.   

Tab. 1. Parameter of the AR(9) model 

order φi 
Asymp. 

std. err. 

Asymp 

t(253) 

Sign. 

level 

1 1.22 0.06 20.1 0.00 

2 -0.50 0.10 -5.26 0.00 

3 -0.10 0.10 -1.01 0.32 

4 0.20 0.10 1.95 0.05 

5 -0.22 0.10 -2.13 0.03 

6 0.06 0.10 0.63 0.53 

7 0.08 0.10 0.83 0.40 

8 0.16 0.10 -1.67 0.10 

9 0.27 0.06 4.47 0.00 

For kh=1, 2, 3, 4 the standard deviations values are 

found in line to the equation (6) 1.10, 1.74, 2.04 and 

2.11 respectively. The standard deviations increase 

asymptotically very fast with increasing prediction 

horizon. To illustrate the standard deviation in the 

measure of the original sunspot series, every prediction 

value was transformed back and the standard 

deviation was estimated. For the upper prediction 

horizons the following sigma values were obtained: 

14.4, 23.3, 29.1, and 32.3. It is clear that with a value 

greater than 30, the meaning of a prediction is 

questionable. The mean of the sunspot numbers is 51.9 

and the two sigma confidence interval is 60, also 

greater than the mean sunspot number. Of course the 

confidence limit is not symmetric about the prediction 

value as a result of the nonlinear transformation as can 

be seen in figure 6, where the prediction for the 

sunspots for the 24 sunspot cycle is shown together with 

the upper and lower confidence limit for the  

significance level of p= 0.9.  For comparison, the 
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prediction for the last four cycles is drawn. This forecast 

was calculated on the basis of the data up to the 

previous solar sunspot minimum. While the sunspot 

number maximum is obtained only three to four years 

after the solar maximum, the prognoses are very 

unascertained.  For example the forecasts for the 21 

and 22 cycle demonstrate the uncertainty.  

 

 

Fig.4. Estimations of the autocorrelation and the partial autocorrelation function of the Sunspot numbers from 1749 till 2010.  
(For discussion see text.) 

 

Fig.5. The distribution of the residuals and its approximation as normal distribution, where the test results are displayed in the graphic 
header a)  and the estimated autocorrelation function of the residuals b). 

The maximum of the 24th solar cycle was forecasted to 

be reached in 2012 with the maximum of 

approximately 90 sunspots yearly mean with the 

confidence interval of +77/-53.  

In praxis the moment when the solar activity 

reaches its minimum is not know.  It can be determined 

only after the appearance of new sunspots with 

reversed polarity of the magnetic field of/between the 

following and preceding sunspots with respect to the 

old ones. Therefore forecasts since 2006 (with the data 

from1749 including 2005) were calculated for every 

year. The forecasts for the following 11 years are shown 

in figure 6. The obtained sunspot maxima are all in the 

interval from 110 down to 87. And in general with the 

progress of the sunspot minimum the prediction 

moment is shifted to the following year. Only for the last 

prediction (the forecast from 2010), which was 

calculated after reaching the sunspot minimum in 

2009, the prediction values from the previous forecast 

were used. The reason is that the first prediction 

sunspot number (of 16.2) for 2010 of the forecast from 

2009 is very close to the really observed value (of 16.9). 

The last predictions show that the sunspot maximum 

the figure 7 the observed monthly sunspot number up 

to June 2011 is also drawn for comparison. The 

prediction values based on the prognoses started in 
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2009 and in 2010 are in very good agreement with the 

observed monthly SSN to date. 
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Fig.6. The observed and prognosed sunspot numbers. The 

prognoses of the next sunspot cycle were started at the 
sunspot minimum before. 
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Fig. 7. Forecasting of the sunspot numbers for the 24th solar cycle. 
The forecast starts in different years. The squares mark the 
values for prediction with start after the observations of  the 
SSN 2009, and the circles- the prediction calculated on the 
basis of the SSN data up to 2010.  For comparison the 
observed monthly sunspot numbers up to June 2011are 
drawn. 

After the back transformation of the forecast values 

of the transformed observed data, applying the 

equation 4, the residua and the mean standard 

deviation (equations 5 and 6) was calculated. 14.4 is 

the obtained standard deviation with the full set of 

parameters. The significant coefficients can be 

dropped from the model, consequently the standard 

deviation is increasing slightly to 15.8. It is significantly 

smaller than the standard deviation (σ = 41.5) from the 

mean (µ= 51.9) of the original time series.  

Conclusions and summary 
While the sunspot number data from 1749 up to the 

modern time are to be described by an AR(9) model, 

the forecast of the solar activity is limited to two - three 

years. For longer prediction horizons the prediction 

errors rise to above 30, less meaningful for solar activity 

forecasts. This statement is in good agreement with the 

findings of Rozelot that accurate forecasting over a 

period of time longer than 2 to 4 years seems 

impossible due to a Lyapounov exponent of 0.5 if the 

11-year activity cycle is excepted (Rozelot, 1995; see 

also Li, 2007). Rozelot pointed out that every solar cycle 

seems to be dominated by its own physical logic.  

Despite this the forecasting from 2009 and 2010 is in 

good agreement with the observed monthly SSN to 

date.  The activity maximum of the 24th solar cycle is 

expected for the year 2013 with a SSN of 

approximately 90.  
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