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Abstract. The tides on the Sun induced by the planets are generally considered to be too small to cause any 
measurable activity on the Sun. However, Seymour et al. (1992) proposed that the planetary tides might be amplified 
by resonating with the magnetic Alfven waves on the Sun. Their preliminary calculations showed that such resonances 
might exist. However, their simulations were carried out only in the photosphere and at the equator using a very 
simple solar magnetic field. We extend the magneto-tidal resonance theory to three dimensions by including the 
effects of latitude and depth and by using a more realistic solar magnetic field pattern. In particular, it is shown that, 
from solar minimum to maximum, the location of magneto-tidal resonance on the Sun moves toward the equator and 
toward the surface. The results reveal that planetary tides could be important in understanding the mechanism of 
solar activity and its periodicity. 
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Introduction 

Solar activity  

Ever since it was discovered that the Sun is highly 

dynamic, scientists have been trying to understand 

what causes solar variability. Although the generation 

of a global solar magnetic field by the solar dynamo 

is not solved definitively, modification of the field by 

the differential rotation and meridional circulation is 

well established. According to the pioneering model 

put forward by Babcock (1961), the differential 

rotation forms toroidal field lines and the rise of such 

magnetic flux ropes appear in the photosphere as 

sunspots, regions of relatively colder and highly 

magnetized plasma, and as filaments in the corona. 

Using helioseismology, it was later found that this solar 

dynamo mainly operates near the tachocline at ~0.7 

Rs where the rotational shear is maximum (Spiegel 

and Zahn, 1992). Advances in solar 

magnetohydrodynamics (MHD) suggested that the 

eruptive solar activity is the manifestation of the 

sudden release of large amounts of stored magnetic 

energy in twisted flux ropes via magnetic 

reconnection (Kopp and Pneuman, 1976). The 

migration of sunspots from mid-latitudes to lower 

latitudes during the course of a solar cycle is known 

as the butterfly diagram and was discovered by 

Maunder in 1904 (Babcock, 1961). This periodic 

latitudinal migration of sunspots is thought to be 

related to the meridional circulation pattern 

(Hathaway et al., 2003).  

However, the root causes of various properties of 

the Sun revealed by observations (such as differential 

rotation, butterfly diagram, meridional circulation) as 

well as the actual mechanisms that cause both short-

term solar activity (such as flares, coronal mass 

ejections, sunspots) and the long-term solar variability 

(such as the ~11 yr solar cycle) have no widely 

agreed-upon explanation. In particular, although 

buoyancy is thought to be a key factor (Parker, 1955), 

how exactly flux ropes intensify and emerge from the 

convection zone rising through the photosphere and 

into the corona and why these happen much more 

often at regular intervals (i.e., at solar maximum) still 

remain to be solved. Identification of what really 

causes solar activity is critical in understanding the 

Sun and improving space weather forecasting. Here, 

we investigate whether planetary tides on the Sun 

could actually become an important factor by 

getting into resonance with Alfven waves on the Sun. 

Ocean tides 

We first briefly describe the ocean tides on Earth 

before discussing the planetary tides on the Sun to 

illustrate how ocean tides, which are originally tiny, 

are amplified. On the earth, ocean tides are known 

as the rise and fall of sea levels caused by the 

gravitational attraction of the Moon and the Sun. 

Tidal force depends on the gravitational gradient, so 

it increases linearly with mass and falls off with the 

cube of distance (Takahashi, 1967). Tides on Earth 

manifest as two bulges in the oceans at opposite 

locations on Earth causing the semi-diurnal (~12 hr) 

ocean tide. The diurnal (~24 hr) ocean tide is a result 

of the tilt of Earth’s rotation axis relative to that of the 

Moon’s orbit and thus occurs only at mid and high 

latitudes. 

On Earth, the tidal force of the Moon is about 10-7 

times the Earth’s gravitational force (and half of that 

for the solar tide) (Seymour et al., 1992); yet, it still 

causes considerable tidal waves in the ocean, 

especially due to the shallow water and funneling 

effects at shores and due to resonance at specific 

locations. Each body of water has a natural 

oscillation period determined by its shape and size. If 

a body of water has a natural oscillation period of 

~12 hr (or ~24 hr), it resonates with the semi-diurnal 

(diurnal) tide, and the tidal heights are greatly 

amplified. For example, although the maximum 

theoretical tidal height due to the combined effects 
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of Moon and Sun is only about 0.8 m, the tides at Bay 

of Fundy near Nova Scotia can reach heights as 

much as 16 m due to its shape and ~12 hr natural 

oscillation period that causes resonance with the 

semi-diurnal lunar tide (Garrett, 1972). 

Planetary tides on the Sun 

The vertical and horizontal tidal forces on the Sun 

caused by the planets are given by the following 

equations (from Takahashi, 1967): 

Fr = GmMRs(3cos2θ-1)/D3 (vertical tidal force)     [1] 

Ft = -1.5GmMRssin2θ/D3  (horizontal tidal force)  [2]  

G (gravitational constant) 

m (mass of solar particles) 

M (mass of the planet) 

Rs (solar radius) 

D (distance between the planet and the Sun) 

θ  (latitude on the Sun) 

The relative magnitudes of the planetary tides on 

the Sun are given in Table 1. It can be seen that the 

theoretical magnitude of the tides on the Sun caused 

by Mercury, Venus, Earth, and Jupiter are all 

comparable and much larger than the tides caused 

by the rest of the planets. 

TABLE 1. Magnitudes of the planetary tides on the Sun relative 
to the Earth 

 
Period 

(yr) 

Mass 

(ME) 

Distance 

(AU) 

Tidal Force  

on Sun 

Mercury 0.24 0.06 0.31-0.47 0.55-1.85 

Venus 0.62 0.82 0.72 2.18 

Earth 1 1 1 1 

Mars 1.88 0.11 1.52 0.03 

Jupiter 11.86 318 5.20 2.26 

Saturn 29.46 95 9.54 0.11 

Uranus 84.01 15 19.18 0.002 

Neptune 164.8 17 30.06 0.0006 

Planetary tidal gravities on the Sun are about 10-12 

of its surface gravity which is much smaller than the 

lunar tide on Earth which is 10-7 of Earth’s gravity 

(Grandpierre, 1996). However, there are various 

factors that can amplify the planetary tidal effects on 

the Sun: 

• Tides from two or more planets add up during 

planetary alignments (i.e. conjunctions or 

oppositions). 

• The duration of tides is much longer due to slow 

solar rotation. Unlike the oceans on the Earth, the 

solar atmosphere consists of plasma for which 

small accelerations for extended periods can 

build up and have large consequences (e.g. 

sudden release of stored magnetic energy via 

reconnection). 

• Tides are greatly amplified in the corona due to 

increase in tidal force and decrease in solar 

gravitational force. For example at a height of 2 

solar radii, the tidal force is 2 times larger and solar 

gravitational force is 4 times smaller than solar 

surface, so tidal effect becomes 8 times larger. 

• Horizontal tidal forces can move large volumes of 

solar plasma along the field lines without much 

resisting force. Converging field lines can 

concentrate plasma “tidal waves” into a narrow 

region, thereby increasing tidal heights 

considerably due to funneling effect. 

• Similar to the ocean tides in Bay of Fundy, a 

possible resonance between the natural 

oscillations on the Sun and planetary tides could 

greatly amplify the tidal effects, which is the topic 

of this study. 

Planets and solar activity 

Since the discovery of solar cycle in 1843 by 

Schwabe, the similarity of its ~11 yr period to the 11.86 

yr orbital period of Jupiter has motivated researchers 

to find a link between planetary motion and solar 

activity. After all, it has not been easy to explain the 

periodic properties of the Sun that persist for centuries 

by turbulence and internal dynamics only. The 

periodicity and long-term stability of planetary orbits 

could provide the missing link.  

During the last century, various researchers studied 

the relation between both short-term and long-term 

solar activity and planetary orbital motions and 

observed correlations between the two. This 

correlation was usually explained by two 

mechanisms: 

• The Sun’s irregular motion around the solar system 

barycenter due to the mass displacement caused 

by the giant planets (Jupiter, Saturn, Uranus, 

Neptune). The Sun’s orbital angular momentum 

changes considerably during its motion. It is 

suggested that this could affect the solar rotation 

via spin-orbit coupling which could be the cause 

of the long-term periodic solar activity (~11 yr  and 

longer cycles).  

• The tides on the Sun caused by the planets 

(Mercury, Venus, Earth, Jupiter). It is suggested by 

many that the tides could trigger short-term solar 

activity such as sunspots, flares, and CMEs. Some 

researchers also found an ~11 yr cycle in 

planetary tides. 

Majority of the studies on planets and solar activity 

focused on the relation between solar motion around 

barycenter and solar cycle. Others studied the effect 

of planetary positions on sunspots and flares (e.g., 

Bigg, 1967; Blizard, 1969; Ambroz, 1971; Seymour et al., 

1992; Grandpierre, 1996; Hung, 2007). Most of these 

studies presented empirical evidence for a relation 

between solar activity and planetary configurations, 

either suggesting planetary tides as the link or without 

providing any physical explanation. A common 

explanation of how planets can cause sunspots or 

flares is that the planetary tides on the Sun could 

cause the magnetic flux ropes on the Sun to rise and 

eventually erupt. After all, the Babcock model 

(Babcock, 1961) can explain how the solar magnetic 

field is twisted and amplified due to differential 

rotation; and the planetary tides can pull these flux 

ropes triggering the release of previously stored 

magnetic energy via reconnection. However, 

planetary tides are too tiny for pulling the flux ropes 
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against solar gravity, so an amplification mechanism 

is needed. One of the most convincing physical 

theories was developed by Seymour et al. (1992) who 

suggested a possible tidal amplification mechanism 

which is introduced next. 

Magneto-Tidal Resonance Theory 

Seymour et al. (1992) put forward a theory based 

on resonant amplification of Alfven waves on the Sun 

by planetary tides. It was proposed that the solar 

activity can be caused by resonance between the 

planetary tides and solar magnetic Alfven waves 

when their angular speeds are nearly equal, therefore 

greatly amplifying the tides. For simplicity, they 

assumed that the solar magnetic field is parallel to 

equator (i.e., toroidal) as a result of differential 

rotation and calculated the equatorial Alfven wave 

speeds at the top and bottom of the convection 

zone that satisfy the resonance condition for 

planetary tides. They showed that the magnetic field 

strengths required for sustaining such Alfven wave 

speeds (~700 G in the photosphere and ~7000 G at 

the tachocline) are similar to the actual observed 

values (Seymour et al., 1992). They then varied the 

solar magnetic field (and thus Alfven wave speed) 

sinusoidally with a ~11 yr period and showed that, 

during the course of a solar cycle, solar Alfven waves 

on a specific “magnetic canal” (a toroidal field line) 

at the equator sequentially get into resonance with 

the tides caused by each planet due to the different 

orbital angular speed of each planet. 

According to the calculations by Seymour et al. 

(1992), the tidal height (u) at a location s(θ,φ) on a 

magnetic canal parallel to the solar equator at solar 

surface is given by: 

u = VA
2Hcos2θcos2(wt+φ+e) / 2(VA

2-w2Rs
2cos2    [3] 

VA
2 = B2/µoρ (Alfven wave speed)                  [4] 

w = ws-wp (angular speed of planet relative to Sun 

at s) 

B (solar magnetic field strength at s) 

ρ (mass density of charged particles at s) 

H = Gt/g  (ratio of tidal to gravitational 

acceleration)  

Gt = 2GMr/D3 (tidal acceleration at equator) 

g (solar gravitational acceleration at surface) 

Rs (solar radius) 

θ (latitude of magnetic canal) 

φ (longitude of s) 

t (time) 

e phase factor;e = 0 if the planet is facing s at t=0) 

On such a magnetic canal, resonance occurs if 

the Alfven wave speed, VA, is nearly equal to wRscosθ, 

in which case, planetary tides are greatly amplified. 

As the solar cycle progresses the solar magnetic field 

gradually increases mainly due to the winding of the 

field lines by differential rotation as originally 

suggested by Babcock (1961) and also by the 

converging and twisting of flux ropes. As the solar 

cycle progresses, Alfven wave speed changes; and, 

at a specific latitude, each planetary tide (from the 

fastest orbiting planet to the slowest) gets into 

resonance with the Alfven wave in sequence. 

Seymour et al. (1992) showed that an Alfven wave 

propagating with a speed of ~2 km/s around the 

equator in the photosphere does get into resonance 

with the tidal planets and that even a 5% change in 

Alfven wave speed can greatly affect the resonance 

condition at a particular location on the Sun. 

Method 
The magneto-tidal resonance theory put forward 

by Seymour et al. (1992) revealed that gravitational 

tides caused by the planets might actually be 

important in the generation mechanism of sunspots, 

CMEs, and flares. However, the simulations they did 

were too simplified as explained below:  

• They used a simple one-dimensional solar 

magnetic field that is parallel to the equator and 

that varies sinusoidally with time.  

• The effect of differential rotation on angular 

speeds and on magnetic field orientation was 

ignored. 

• The calculations were made only at a specific 

point (i.e., sub-planetary point on solar surface). 

• The effect of each planet was calculated for an 

ideal circular planetary orbit parallel to solar 

equator. 

The Alfven wave speed (Equation 4) depends on 

plasma mass density and magnetic field which 

depends not only on the location on the Sun (e.g., 

latitude and height/depth) but also varies with time 

(due to solar cycle). Moreover, the resonance 

depends on the “angular” speed of the Alfven wave 

(which depends not only on magnetic field intensity 

but also on field geometry and location on the Sun) 

relative to the angular speed of planetary tide (which 

depends on the particular planet and its orbital 

position due to eccentricity). If the latitude and depth 

factors are included, then it can be shown that tides 

induced by different planets can simultaneously 

resonate with the solar Alfven waves but at different 

latitudes and depths which shift gradually as the 

global solar magnetic field intensity and geometry 

changes during the course of a solar cycle. 

Accordingly, we improve the resonant tide theory 

(given in Equation 3) by using a more realistic solar 

magnetic field pattern and variation and extend it to 

three dimensions by including the effects of latitude 

and depth as well as differential solar rotation. Next, 

using a simple model based on equations given by 

Babcock (1961), we demonstrate that the location 

(e.g., depth and latitude) of resonance between the 

planetary tides and solar Alfven waves depend on 

the planet and vary with time. 

Latitude dependence 

 The latitudinal dependence of resonance can 

arise from five factors:  

• Differential solar rotation (e.g., solar convection 

zone rotates at a slower rate at higher latitudes). 
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• Solar magnetic field intensity (and thus Alfven 

wave speed) varies with latitude. 

• An Alfven wave with a specific speed parallel to 

the equator has a higher angular speed at higher 

latitudes due to the shorter distance traveled.  

• The parallel angular speed of Alfven waves 

depend on the tilt of the magnetic field which 

varies with latitude. Solar magnetic field (after a 

few rotations) becomes nearly parallel with 

equator at mid- latitudes in contrast to the field at 

very low (equatorial) and very high (polar) 

latitudes which always remain nearly meridional.  

• Vertical and horizontal planetary tides are largest 

near the equator and mid-latitudes, respectively. 

At high latitudes, horizontal tides are negligible 

and vertical tides become negative. 

Furthermore, the resonant latitude varies in time 

due to the following:  

• Variation of solar magnetic field intensity (and thus 

Alfven wave speed) with time (increases due to 

differential rotation, convergence, and twist and 

decreases due to field cancellation and 

relaxation). 

• Variation of solar magnetic field pattern (which 

gradually changes from a dipole to a toroidal 

configuration due to differential rotation). As the 

toroidal component becomes larger, the angular 

speed of the Alfven wave parallel to the solar 

equator increases. 

• The resonance latitude would slightly change in 

time due to elliptical orbits of the planets, but for 

simplicity, here we assume circular planetary orbits 

with constant angular speeds.  

To define these relations, we start with the 

following equations taken from Babcock’s model 

(Babcock, 1961): 

wS = 14.4° - 2.8°sin2θ        [5] 

(solar differential rotation in degrees per day)   

tan(γ) = 17.6.t.sin(2θ)        [6]  

(γ is the angle of B with meridian) 

(t is time in years since solar min) 

B = Bo / (cosγcosθ)   for -30°<θ<30°  [7] 

(θ is the solar latitude) 

However, representation of solar horizontal 

magnetic field with Equation 7 is only valid for low 

latitudes since it goes to infinity for high latitudes 

which is not realistic. For higher latitudes, we use 

B=Bo(1+ksinθ)/cosγ which is more reasonable. The 

transformation of poloidal field into toroidal form is 

represented by Equation 6. The field is mostly parallel 

to the equator (i.e., γ~90°) except for very early in 

solar cycle (t~0) (for which the field is poloidal for all 

latitudes) and at very low and very high latitudes 

(θ~0° and θ~90°) (for which the field always remains 

poloidal). We then calculate the dependence of 

Alfven wave angular speed on latitude and time 

assuming that density (ρ) in Equation 4 does not 

change with latitude. We also assume longitudinal 

symmetry. For resonance, instead of the actual Alfven 

wave speed (VA), the angular speed of Alfven waves 

parallel to equator, which we define as wA, is 

important. We calculate it as follows: 

wA = VA///Rs = VAsinγ/Rs                                   

~ B(sinγ) ~ (1/cosγcosθ)(sinγ) ~ tanγ/cosθ 

~  tsin(2θ)/cosθ ~ tsin(θ) for θ<30°       [8] 

For θ>30°, we use  

wA ~ B(sinγ) ~ (1+ksinθ)tanγ ~ t(1+ksinθ)sin(2θ)  

Resonance condition: wS(θ)-wA(t,θ) = wP             [9] 

(wP  is the angular speed of the planet) 

Depth dependence 

The resonance between Alfven waves and 

planetary tides depend on depth due to two main 

reasons: 

• The mass density of charged particles and 

magnetic field intensity (ρ and B in Equation 4) 

increases with depth. As a result, the Alfven wave 

speed changes with depth. 

• The radius of the circular magnetic canal 

decreases with depth (as well as with latitude), so 

the angular speed of the Alfven wave increases. 

For simplicity, we assume that the magnetic field 

geometry does not change much with depth which is 

mostly valid in the convection zone where the 

differential rotation still applies. However, the field 

geometry changes considerably at the tachocline 

where the radial rotational shear is maximum. So our 

calculations are valid only above the tachocline 

where the angular speed of Alfven waves is not 

affected by the radial tilt of field lines. We also 

assume that the density and magnetic field both 

increase exponentially with depth in the convection 

zone. The Rs in Equation 8 is replaced by R and the B 

and ρ in Equation 4 are replaced by: 

ρ(R)= ρoek(1-R/Rs)    B(R)=Boek(1-R/Rs)    [10] 

R (radius of the shell, 0.7Rs at tachocline) 

Bo (magnetic field strength at the surface) 

ρo (mass density of charged particles at the 

surface) 

k (coefficient to adjust the boundary values) 

It is seen from Equation 8 that these changes 

introduce the following factor to wA. 

wA(R) = wAe0.5k(1-R/Rs)/(R/Rs)                  [11] 

 From this equation, it is clear that the angular 

speed of the Alfven wave increases considerably with 

depth (i.e., as R decreases), thereby affecting the 

latitude of resonance with planetary tides. 

Results 
For a magnetic canal parallel to the equator, the 

resonance condition in Equation 9 results in the 

following: 

S = B/ρ0.5                        [12] 

B = B(d, θ, t) 

ρ = ρ(d) 
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d=R/Rs (d=0.7 at tachocline, and d=1.0 at the 

surface) 

VA = S(µo
-0.5) = (892)S                   [13] 

wA = VA/R = VA/dRs = (892)S/d(7x108) [rad/s]     [14] 

wA[0/day]=wA[rad/s] (180°/π) [86400 s/day]     [15] 

wA=(S/d)(892x180x86400)/(7x108xπ)=6.3(S/d)    [16] 

wA= 6.3(S/d) = (wS-wP) (resonance condition)   [17] 

From Equation 5, the solar angular speed, wS, 

varies from ~14.4 °/day at the equator to ~11.6 °/day 

at the poles.  The angular speed of the tidal planets 

are in the range of 0-5 °/day (4.11° for Mercury, 1.59° 

for Venus, 0.98° for Earth, 0.08° for Jupiter). From this 

equation, it is possible to get an idea of required 

values of magnetic field (B) and density (ρ). For 

example, at the equator (θ=0°) and surface (d=1.0), 

for Alfven waves to resonate with the planetary tides 

caused by Earth the ratio S=B/ρ0.5 needs to be equal 

to (wS-wP)(d/6.3)=(14.4-0.98)/6.3=2.13. So, for 

instance, a typical sunspot magnetic field of 0.3 T and 

surface density of 0.02 kg/m3 would satisfy the 

resonance condition. The Alfven waves in such 

magnetic canal would have a speed of 2.13×892=1.9 

km/s (an angular speed of 13.4°). The rotational 

speed of the Sun at the equator is ~2 km/sec (or 

14.4 °/day). And at the solar equator the speed of the 

tide caused by Earth is ~0.1 km/s (or ~1 °/day). So, 

with these values, resonance occurs (i.e., wS-wA=wP) 

and as a result, the tides caused by Earth would be 

amplified. Near the tachocline below the equator 

(d=0.7, θ=0°) B and ρ increase a lot and the ratio S 

decreases to 2.13x0.7=1.5. So, for example, a typical 

tachocline B value of 3 T and density value of ~4 

kg/m3 would satisfy the resonance condition for the 

tides caused by Earth near the tachocline. Note that, 

when B increased 10 times, ρ had to increase 200 

times to have a constant Alfven wave speed (i.e., to 

keep resonance) which is a reasonable depth 

variation of B and ρ (e.g., Figures 16 and 18 of Fan, 

2009). 

Latitude dependence 

The simulation result for the latitudinal 

dependence of angular speed of the Alfven wave 

and solar rotation is shown in Figure 1 for the surface 

(i.e., photosphere) at solar minimum. For this 

calculation, the values used for the magnetic field at 

the equator (Bo) and the density (ρo) are 0.1 T and 

0.03 kg/m3, respectively. 

 

Fig.1. Latitudinal dependence of the angular speeds of Alfven 
waves, the Sun, and tidal planets in the photosphere at 
solar minimum for Bo=0.1 T and ρ=0.03 kg/m

3. The wS-wA 
curve and its intersections with the planetary angular 
speeds (i.e., resonance locations) are also shown 

The latitude dependences of solar rotational and 

Alfven wave angular speeds are shown with wS and 

wA, respectively. The angular speeds of the tidal 

planets (Mercury, Venus, Earth, and Jupiter) do not 

change with latitude so they appear as vertical lines. 

For each planet, the latitude of tidal resonance is 

given by the intersection of the corresponding 

vertical line with the curve wS-wA which are shown 

by black dots. Although each planet has two 

intersection points, one of them is at a very high 

latitude and can be ignored as the tides at such high 

latitudes are negligible. As for the other intersection 

point, it can be seen that tides due to faster (slower) 

planets gets into resonance with solar Alfven waves 

at lower (higher) latitudes. It should be noted that the 

calculations were made at a fixed depth (at surface) 

and density was assumed not to vary with latitude. 

The variation of wS-wA in time (due to the 

variation of wA) is shown in Figure 2. For simplicity, the 

orbits of planets are assumed circular, so the angular 

speeds of planetary tides are taken as constant. Also 

shown in the figure is the decrease of the planetary 

tidal force with latitude (labeled as “t”) due to the 

~cos2θ factor in Equation 3. The result is shown only 

up to 40° latitude as the resonances at high latitudes 

are not important as explained earlier.  

According to Equations 6 and 7, as the time 

increases, the magnetic field increases and becomes 

more toroidal both of which result in faster angular 

speed of Alfven waves. As a result, the wS-wA curve 

shifts towards left. It can be seen in Figure 2 that 

during the course of a solar cycle, the resonance 

location for each planet gradually moves to lower 

latitudes as a result of increased Alfven wave angular 

speed. 
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Fig.2. The dependence of the tidal resonance latitude on the 
planet and the angular speed of the Alfven wave which 
varies with time due to changes in magnetic field intensity 
and configuration. Resonance locations are shown with 
black dots. Each  wS-wA curve is calculated using a 
different solar equatorial magnetic field. It is assumed 
that solar magnetic field intensifies in time and becomes 
more toroidal. Therefore the angular speed of Alfven 
waves (wA) increases and the relative angular speed (wS-
wA) decreases. This causes the resonance locations to 
gradually move to lower latitudes. Also shown in the plot 
is the decrease of the planetary tidal force with latitude 
(t). 

Figure 3 shows the resonance latitude variation 

with time for tidal planets corresponding to the 

intersection points in Figure 2 which looks similar to a 

typical butterfly diagram. We note that, in our model 

(e.g., Equations 6 and 7), the solar magnetic field 

gradually becomes more toroidal and intensifies and 

does not return to the dipole (e.g., via field 

cancellation). As a result, the resonance latitude 

keeps decreasing 

 

Fig.3. The variation of resonance latitude with time for tidal 
planets. The minor wiggles are artifacts due to the low 
latitude resolution (1°) used in the calculations. 
Resonance locations are shown with black dots. 

Depth dependence 

As mentioned earlier, the Alfven waves propagate 

faster with increased depth. Consequently, similar to 

the shift in time in Figure 2, the wS-wA curve shifts 

toward lower values of angular speed and intersects 

the vertical planetary lines at lower latitudes with 

increasing depth. So, the latitude of resonance 

between the Alfven waves and planetary tides 

decreases with depth. This dependence of 

resonance latitude on depth is illustrated in Figure 4 

for a magnetic field of 3 T and density of 1 kg/m3 near 

the tachocline below the equator at solar minimum. 

Both the density and magnetic field are assumed to 

decrease exponentially with height using Equation 10. 

As shown with an arrow, as the time (and thus B) 

increases, the curves shift toward right to increased 

heights or lower depths for specific latitude and to 

lower latitudes for a specific depth. 

 

Fig.4. The variation of resonance latitude with depth and time 
for tidal planets for a magnetic field of 3 T and density of 
1 kg/m3 at the tachocline below the equator at solar 
minimum 

Discussion 

Latitude dependence 

Three important features of the observed sunspot 

distribution on the Sun can be explained with the 

magneto-tidal resonance theory: 

• Sunspots gradually move to lower latitudes during 

a solar cycle (the butterfly diagram). This can be 

explained by the gradual shift of the magneto-

tidal resonance location to lower latitudes. 

• Sunspots hardly appear above 40° latitude. This 

can be due to a couple of reasons. 

o The tidal forces become too small at high 

latitudes. 

o The minimum Alfven wave speed (e.g. at solar 

min in the photosphere) is not small enough to 

have resonances above 40°. In other words, 

the Alfven wave angular speed increases with 

latitude and above a certain latitude might 

become larger than the angular speed of the 

Sun and thus rotate in the opposite direction of 

the planets. 

• Sunspots almost never appear near solar equator. 

Since the solar magnetic field at the equator (and 

poles) does not have a component parallel to the 

equator (i.e., γ=0° for θ=0° and 90° in Equation 6), 

at the equator the angular speed of Alfven wave 

parallel to equator is zero. As a result, at the 

equator, wS-wA= wS which is ~3 times faster than 

the fastest planet. So, regardless of how fast the 

Alfven waves are they can not get into resonance 
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with planetary tides near the equator (or the 

poles) due to the geometry of the magnetic field. 

It is observed that very early in a solar cycle the 

field lines are mostly poloidal so no resonances can 

occur at any latitude; however as the field becomes 

more intense and more toroidal, resonances due to 

planets start to occur at high-latitudes and gradually 

propagate to lower latitudes. The secondary 

resonances at high latitudes are not important as the 

tides become too small at high latitudes. The 

resonances never occur near the equator as the field 

there is always poloidal. The resonances with faster 

planets always occur at lower latitudes than with 

slower planets. It should be mentioned that this 

preliminary simple model assumes the solar magnetic 

field keeps winding and intensifying during the course 

of a solar cycle. To be more accurate, after reaching 

solar maximum, the solar magnetic field should start 

weakening and gradually return to a poloidal 

configuration. However this complex dynamic 

process involving field cancellations and relaxations 

via reconnection, merging, and migration of active 

regions (Leighton 1969) is beyond the scope of this 

study. 

Depth dependence 

The results on the depth variation of resonance 

latitude show that, deep in the convection zone, 

resonances occur at lower latitudes closer the 

equator. Assuming density and magnetic field both 

decrease exponentially with height, the resonance 

location rapidly moves to higher latitudes higher in 

the convection zone. This might be another 

explanation of why sunspots are hardly observed 

near the equator at the surface. If the resonant flux 

ropes rise vertically (i.e., constant latitude), they will 

get out of resonance quickly at least until they get 

into resonance with another, faster moving planet 

closer to the surface. In addition, as B increases with 

time (i.e., from solar min to solar max), the resonance 

locations move toward the surface for specific 

latitude and to lower latitudes for specific depth.  

On the other hand, the dynamo theory suggests 

that the sunspots are created at the bottom of the 

convection zone (i.e., tachocline) where the radial 

rotational shear is maximum. According to the most 

common explanation, the toroidal flux ropes created 

at the tachocline twist, intensify, and buoyantly rise in 

the convection zone and appear as sunspots when 

they reach photosphere (Babcock, 1961).   

The result for a flux rope will be different as the 

density variation with depth (instead of magnetic 

field intensity) would be the dominant factor. 

According to our model, such flux ropes at the 

tachocline can resonate with tides and rise. While 

they are rising, the magnetic field decreases little 

compared to the density which decreases 

exponentially. As a result, the Alfven waves become 

faster (in contrast to the case with exponentially 

decreasing B). So, to keep the resonance, the flux 

ropes have to migrate toward the equator where the 

Alfven wave speed is lower. So, the prediction of this 

model on the depth variation of resonant latitude 

depends mainly on how rapidly the magnetic field 

decreases with height. It is likely that the density 

decreases much more rapidly with height than the 

magnetic field, in which case the result shown in 

Figure 4 would not be valid as the resonance latitude 

might stay nearly constant or even decrease with 

height depending on how fast the density is 

decreasing compared to the magnetic field. 

According to the numerical model result shown in 

Figure 18 of Fan (2009), the Alfven wave speed in a 

flux rope remains constant from the tachocline at 

0.7Rs up to ~0.9Rs and then decreases toward the 

surface. This means that the ratio B/ρ0.5 remains 

constant through most of the convection zone 

suggesting that the increase in B with depth is indeed 

much slower than the increase in ρ. 

Conclusions 
These results show that the planetary tides do 

often get into resonance with the magnetic Alfven 

waves on different parts of the Sun. The magneto-

tidal resonance theory can be useful in 

understanding various properties of the Sun (such as 

the butterfly diagram) and suggests a physical 

mechanism for sunspot and active region formation. 

In these simulations, tilts and eccentricities of 

planetary orbits were ignored. Since the resonances 

are very sensitive to small changes in parameters, it is 

necessary to include the slight variability of planetary 

angular speeds in the model. Furthermore, the orbital 

tilts of the planets might be useful in explaining the 

north-south asymmetry of solar activity. Most 

importantly, the periodicities detected in solar activity 

(including the ~11 yr solar cycle) could be explained 

by periodic enhancements of tides due to periodic 

alignments of planets and due to the periodic 

changes in the orbital angular speeds of planets due 

to their elliptical orbits. Using ephemerides data for 

the planetary orbits and actual data for the Sun 

(density, magnetic field orientation and intensity) 

would allow the model to make predictions of actual 

resonance locations. Once this is accomplished, it 

would be possible to compare the predictions based 

on the model with actual solar activity to test whether 

the magneto-tidal resonance theory is important. If 

this theory is found to have merit, the predictability of 

planetary orbits would then enable precise and long-

range forecasting of solar activity. 
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