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Abstract. The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is 
studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across 
and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the 
anisotropy features of the plasma are motivated by observed solar coronal data. The 16–moments equations derived from the 
Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear 
disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the 
incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable 
behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, 
pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied
to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless 
approximation is valid.  
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1. Introduction 
Since the first identification of the coronal emission 

lines as forbidden lines of multiply ionized atoms (Fe, Ni)
by Grotrian [1] and Edlén [2] it has been recognized that 
the corona has a high temperature of T > 106 K and 
requires permanent heating. Heating by acoustic waves 
was first proposed by Biermann [3]. Later the idea has 
been extended to magneto-hydro-dynamic (MHD) 
waves because heating seems to be focused to regions 
with magnetic field concentrations, to closed fields in 
particular. Parker [4, 5] suggested heating by currents 
due to topological dissipation of magnetic fields braided 
by photospheric footpoint motions. So far a huge 
number of interesting heating mechanisms have been 
suggested, but it turned out to be difficult to select and 
prove the most probable mechanisms by existing 
observations. Recently, new excellent space-borne data 
became available; simultaneously the plasma physics 
simulations and MHD modeling in particular have 
reached a degree of realism which suggests to look 
again for a solution of the problem. For example, 
Aschwanden et al [6] gave 10 arguments against local 
heating in the corona, but in favor of primary heating in 

the upper chromosphere and transition region, in the 
footpoint regions of closed magnetic loops. 

Our knowledge of coronal loop oscillations has 
greatly improved by imaging observations, mainly 
onboard the SOHO and TRACE satellites [7]. Different 
kinds of strongly damped oscillation modes are observed 
as transverse amplitude oscillations with periods of 2 – 30 
min. By imaging radio measurements modes with much 
shorter periods are detected. The great variety of waves 
and oscillations observed in detail in the corona [7, 8] 
suggests to consider wave heating again. Acoustic 
waves are damped in the lower chromosphere. MHD 
waves, transverse incompressible Alfvén waves in 
particular, can travel along the magnetic field, reach 
coronal heights and bring enough energy to these 
heights. However, it is difficult to convert globally this 
energy into heat. In order to increase the dissipation 
various mechanisms of damping of such waves have 
been suggested (see [9]), such as phase mixing, 
resonant damping, coupling to compressible (slow and 
fast) MHD modes, and kinetic effects (ion-cyclotron 
resonance). The coronal emission lines arising practically 
at all altitudes with different magnetic configurations 
demonstrate a non-thermal broadening of the profiles. 
From Doppler shift estimates the amplitudes of such 



N.S. Dzhalilov, et al. MHD Waves in the Collisionless Space Plasma 

66

motions are in the range of 25 – 50 km s 1. The origin of 
such turbulent motions is unclear. 

The coronal plasma is very anisotropic and 
inhomogeneous, in cross-field direction in particular [7]. 
Various topologies of a strong magnetic field with open 
and closed configurations in an almost collisionless, 
rarefied, hot space plasma lead to its strong anisotropy, 
and the transport coefficients become tensor quantities. 
Under such circumstances a traditional hydro-dynamical 
description of the plasma is impossible. That is why we try 
to extend the MHD equations by considering the 
anisotropy of the magnetized collisionless plasma. 

Let us consider, for instance, the characteristic 
parameters of the solar corona: a temperature of Te  Ti = 
106 K, a density of ne  np = 109 cm 3 (subscripts e, i, and 
p mark values for electrons, ions, and protons, 
respectively), and a range of magnetic field strengths of 
B = 0.1 100 G. Using these parameters we get the 
following estimates: electron and ion thermal velocities 
of Tev  4 × 103 km s 1 and Tiv  100 km s 1, electron and 

ion collision times of e  10 2 s and i  0.8 s, electron 

and ion mean free paths of e  40 km and i  80 km,

electron and ion gyroradii of Ber  200 0.2 cm and Bir
9000 9 cm, electron and ion gyrotimes of Be

10 6 10 9 s and Bi  10 2 10 5 s, Alfvén and sound 

speeds of Av  10 104 km s 1 and Sc  100 km s 1,
respectively. Hence the conditions of a strong magnetic 
field — e » Ber , i » Bir , e  » Be , and i » Bi   — are well 
satisfied. That means, particles gyrating around the 
magnetic field lines are localized across the field at a 
distance of the Larmor radius which for motions across 
the magnetic field plays the role of a free path length of 
particles. Thus the dynamical motion of a collisionless 
plasma with characteristic scales of L » Br  and » B
behaves across the magnetic field as a fluid.  

Frequent collisions turn the plasma distribution 
function to an isotropic one, and thus the thermal 
pressure is isotropic as well. If collisions rarely occur, the 
energies of chaotic motions are no longer “mixed”, and 
pressure becomes anisotropic. The presence of a 
magnetic field will maintain a “non-mixed” state of the 
energies of longitudinal and transverse motions of 
particles. So, the transverse and longitudinal pressures will 
differ from each other, 1|||| TTpp  (here 

p and T are the mean thermal pressure and 

temperature). For a very short time Be  across the 
magnetic field mean values of thermal pressure and 
temperature are established, but this does not occur so 
fast along the field. As a result the plasma becomes 
colder along the magnetic field, TT|| . A distinct 

thermal anisotropy of 32~||TT  has been observed in 

the solar wind, see for example, Feldman et al [10], 
Marsch et al [11], and Casper et al [12]. A strong 
anisotropy of temperature of the ionospheric plasma 

reaching 50-60 percent is really found in experiments, 
see Clark et al [13] and Likhter et al [14]. Large heavy-ion 
thermal anisotropies ( 100||TT ) were also detected in 

the solar corona by UVCS/SoHO by Kohl et al [15] and 
Cranmer et al [16]. A similar but smaller anisotropy exists 
for protons, see Cranmer et al [16], and for the coronal 
hole temperature anisotropy, see Dodero et al [17] and 
Antonucci et al [18]. It is now generally accepted that 
the observed large ion temperature anisotropies are 
related to the physical mechanism by which the solar 
corona and solar wind are heated, see Hollweg and 
Isenberg [19], and Marsch [20]. 

Along the magnetic field the plasma is collisionless, if 
the particle parallel mean free path is not small in 
comparison with the considered characteristic scales: 

ie,  50 km, so that the wavelength along the 

magnetic field is ||  < 50 km. The hydro-dynamical 

description can also be applied to the motions of such a 
plasma. The criterion of applicability of the hydro-
dynamical description in this case is obtained by 
comparing self-consistently the electric force with the 
pressure gradient; it is connected with the smaller 
thermal velocity of particles in comparison with the 
speeds of the directed stream: AT vvv ~0

21 , see 
Oraevskii et al [21]. 

Due to the anisotropy of the kinematic temperatures 
of protons and heavy ions the corresponding partial 
pressures become anisotropic in this way. This makes the 
total thermal pressure anisotropic too, 

||pp . Physically 

such a situation can be realized only if the particle 
collisions in the plasma are rare. In the present paper we 
consider the wave peculiarities which can appear in a 
collisionless plasma. With this objective we formulate in 
Section 2 the basic equations, which are the integrated 
moments’ equations of the kinetic Boltzmann-Vlasov 
equation. In Section 3 the linear wave equation and the 
general dispersion relation for the incompressible case 
are derived. The solutions and analyzes of the dispersion 
equation are the topic of Section 4. In Section 5 we 
investigate the instability domains in dependence on the 
magnetic field, on the pressure anisotropy parameter, 
and on thermal fluxes. The discussion and conclusions 
are presented in Section 6. In the Appendix the common 
expression describing the boundaries of the instability 
domains is derived.  

2. Basic Equations 
A successful way to describe a plasma is the use of 

the system of the equations consisting of the kinetic 
equations for the distribution functions of the particles 
and the Maxwell equations for the electromagnetic 
field. The hydro-dynamical approach is based on the 
isotropic character of the distribution of the degrees of 
freedom of thermal energy for the plasma components 
in the form of (or very close to) the Maxwell function. 
However, in real situations the distribution functions of the 
space plasma components, ions in particular, differ 
strongly from the Maxwell function. 

Despite the relative smallness of 
Tie,

« 1 ( T  is the 

thermal scale height), the coronal plasma, for example, 
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cannot be described satisfactory by theories supposing 
that local velocity distribution functions are close to 
Maxwellians, see Marsch [20].  

The distribution function trufa ,,  describes the 
density of particles of a kind a  in the six-dimensional 
phase space ru, ; it is the solution of the kinetic 
Boltzmann-Vlasov equation: 

aauaaa
a

aa
a QfBu

c
EeF

m
fu

t
f 11     (1). 

Here E  and B  are the total electric and magnetic 
fields, ae  and am  are the charge and mass of particles 

of a sort a , aF  are the non-electromagnetic forces; c  is 

the speed of light, u  is the gradient in the velocity 

space, and aa fQ  are the integrals of collisions. This 
statistical equation for the plasma is deduced assuming 
that the ratio of the average energy of the interaction of 
two particles to their average kinetic energy is small 
enough. That means the number of particles in a plasma 
sphere with a Debye radius Dr  should be 31 Dnrg « 1. 

In a collisionless approach 0aQ . The left-hand part of 
Eq. (1) gives an effect of the order of unity, while the 
right-hand part for pair collisions (Landau integrals of 
collisions), for example, gives an effect of order g [22]. 
For coronal conditions g  10 6, hence the collisionless 
approach can be applied. All the macroscopic 
parameters (density, plasma flow speed, pressure, 
thermal flux, tensor of viscosity, etc.) are defined as the 
corresponding speed moments of the distribution 
function: 

k

j ja
k

k
k vfdutrMM

1 ,
)(
...1 ),(  , 3,2,1i .

For example, the density of particles is 
udftrnn ),( , the hydro-dynamical speed of the 

plasma is udfutrvn ),( , where zyx dududuud .

Due to the complexity of Eq. (1), usually the equations for 
the moments of the distribution function are deduced, 
and these equations refer to the hydro-dynamical or the 
transport equations. The main difficulty in deducing 
these transport equations consists in the problem that in 
the infinite chain the momentum equations become 
coupled among each other, therefore some additional 
physically proved assumptions for truncating this chain 
are required. 

In a collision dominated plasma one can decompose 
the distribution functions around the basic state of an 
isotropic equilibrium which is described by the Maxwell 
function, and if hydrodynamics can be applied a 
truncation of the chain of moment equations leads to 
rather simple MHD equations. If collisions among particles 
are rare and a strong magnetic field is present, the 
conditions become more complicated, however, for a 
collisionless plasma mainly across a magnetic field the 
hydro-dynamical approach can be used, see, e.g., 
Chew et al [23], and Rudakov and Sagdeev [24]. In this 
approximation the distribution function in a strong 

external magnetic field will depend on both speeds, 
those along and across the field: 

),,,(),,( || tuurfturf .

The solution of the kinetic equations is searched for in 
the form of the expansion 

vk

k
vv truPtratruftruf

,

)(
0 ),,,(),(),,(),,(                (2) 

where 0f  is the weighting function of the expansion (the 

zero-approach distribution function), va  are the 

expansion coefficients, v  are the coordinates, )(kP  is 
an orthogonal polynomial of order k  (for example, a 
Hermitian polynomial). If a Maxwellian distribution is 
chosen for the weight function 0f , Eq. (2) describes a 
state close to the thermodynamic equilibrium. Such an 
approach refers to the method of Grad [25]. However, 
the method of Grad cannot be applied to describe a 
plasma with arbitrary anisotropic pressure. For this 
purpose Oraevskii et al [26, 21] have used a bi-
Maxwellian quasi-equilibrium distribution,  

.
22

exp
22 ||

2
||

2
21

||
0 kT

mu
kT

mu
kT
m

kT
mnf      (3) 

For a small parameter 0g  the plasma is closer to 
a thermo-dynamical equilibrium state. In that case the 
multi-partial distribution function is close to a product of 
single partial distribution functions [22]. Therefore it is 
justified to use a bi-Maxwellian distribution calculated by 
multiplying the two functions along the magnetic field 
and across the field. This method introduces two vectors 
of thermal fluxes, and the total distribution function is 
expressed through 16-moments. The method of Grad 
results in 13–moments equations. The conditions for 
truncating the chain of the equations to the 16–
moments equations are reduced to the following two 
statements: 

a) the components of the viscosity tensor should be 
much smaller than the pressures across and along the 
field, ||, pp ;

b) thermal fluxes ||, SS « 3
Tv , where mkTvT  is 

the thermal speed. 
These requirements are satisfied in the transverse 

direction, if LrB « 1, B « 1. In the longitudinal 

direction we should have |||| Lva TII «1. 0||a
means small pressure forces (thermal motion of particles) 
in comparison with the electromagnetic forces, i.e. the 
plasma is “cold”. In this case the equation of motion is 
transformed into the equations of motion for the 
separate components of the plasma. 

The 16–moments set of equations was used by many 
authors in different theoretical approaches, especially 
for modeling the solar wind, see Demars and Schunk 
[27], Olsen and Leer [28], Li [29], and Lie-Svendsen et al 
[30]. Thus, the 16–moments set of transport or MHD (not in 
the sense of the usual isotropic case) equations for the 
collisionless plasma in the presence of gravity g but 
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without magnetic diffusivity under the conditions of B «

V , B « Tv  is given as follows, see Oraevskii et al [21]: 

,0divv
dt
d                                                                      (4) 

,][

4
1

8

||||

2

pphhhhhdivhpp

gBBBp
dt
vd

           (5) 

,2||
3

2

3

2
|| Bh

B
S

B
S

hBBBp
dt
d              (6) 

,2B
ShB

B
p

dt
d                                                (7) 

,
3 ||

4

3
||

4

3
|| p

h
BpBS

dt
d                                       (8) 

,
||

||
2
||

2 Bh
Bp
pppph

pS
dt
d            (9) 

,0vBvdivB
dt
Bd ,0Bdiv                                (10) 

where ,|| ,|| hh and

,v
tdt

d ,|| vvv
B
Bh                                 (11) 

Here ||S  and S  are the heat fluxes along the 

magnetic field by parallel and perpendicular thermal 
motions. If the thermal fluxes are neglected, S  = 0 and 

||S = 0, we receive the equations describing the laws of 

the change of longitudinal and transverse thermal 
energy along the trajectories of the plasma (the left-
hand parts of Eqs. (6) and (7). These so-called “double-
adiabatic” parities and Eqs. (4), (5), and (10) form as 
though a closed system of equations, the CGL (Chew-
Goldberger-Low) equations, see Chew et al [23]. 
However, using the CGL-equations can result in 
unsatisfactory Eqs. (8, 9). This is because deducing the 
CGL equations the third moments of the distribution 
function, hence the thermal fluxes, have been lost 
without any proof, see Chew et al [23], and Baranov and 
Krasnobayev [31]. The equations following from the 16–
moments set in our case, Eqs. (4 - 10), consider the 
thermal fluxes, they are more complete, and the CGL 
equations do not follow from these equations as a 
special case. One should compare the final results in the 
limits S  0 and ||S  0 with the results based on the 

CGL equations, deduced by many authors, see, e.g., 
Kato et al [32], Baranov and Krasnobayev [31], and 
Kuznetsov and Oraevskii [33]. 

3. Wave equations 
For simplicity we will now assume, that the basic initial 

equilibrium state of the plasma is homogeneous, g = 0, 
and the following quantities are constant: 

,,,,,, 000||00 SBppv o and 0||S . Eqs. (4–10) will 

automatically satisfy such an equilibrium state with non-

zero thermal fluxes. We will consider small linear 
perturbations of all physical variables, e.g. for pressure in 
the form ).,(0 trppp

Let ,exp~),( trkitrp  where kv00

is the wave frequency observed in the moving frame of 
the fluid, and k is the wave number of the fluctuations. 
For the perturbations we receive the equations  

00 vk                                                             (12) 

,0

44

||00

00
0

pphkhkhkh

BBkBBpkv
 (13) 

,000 vBkvkBB ,0Bk                    (14) 

,
0

2
0

1
0

0 a
B
Ba

p
pa                                                   (15) 

.
0

2
0

1
0||

||
0 b

B
Bb

p
p

b                                                     (16) 

Deriving these equations we have excluded 
fluctuations of the thermal fluxes, using 

,2
0

0
00||000

00|| S
B
B

pp
pppk

S         (17) 

.433

00
0||

00||

||

0

2
0||

|| B
BS

p
pkp

S                 (18) 

Here ,00|| pp ,000 BBh
cos0* kkhk . The indices II  and  correspond 

to the values of the parameters along and across the 
magnetic field. Even if we insert in Eqs. (17–18) 

,000|| SS  the perturbations of these functions will 

never become zero: 0,0|| SS . That means, using 

the 16–moments equations we should get more reliable 
results on the wave properties in an anisotropic plasma 
than with the CGL equations based on the 13–moments 
equations.  

Strictly speaking, the heat fluxes of particles of a kind 
a  should be defined as ,2

2
1

aaaaa ccmnS  where 

aa vuc  is the chaotic thermal speed. In the presence 
of an external magnetic field the components of this flux 
are defined by the solutions of the kinetic Eq. (1). 
However, we should use here some appropriate 
estimate as a parameter.  

The initial collisionless heat flux functions 0||S  and 0S
should be estimated by taking the thermal energy 
density of the electrons multiplied by the non-thermal 
flow speed along the magnetic field 

0v :

.
4
3

2
3

||00||0|| pvvTknS Be

Hollweg [34, 35] has given some estimates of the 
correction parameter (  in his papers) assuming 
various realistic shapes of the electron distribution 
function in Eq. (1) and checking the results for 
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agreement with space observations.  depends on the 
magnetic field. In the range of B = 0.1  100 G we have 

 4 0.1. In the same way pvS 00 4
3 . Using the 

condition 3
||,||, )( TvS  mentioned above, we get 

some restriction for 0v : 3
0

2
Tes vvc . Even for the 

maximum Alfvén velocity Avv0  this condition is 

obeyed. For coronal conditions we should identify 0v
with the observed non-thermal velocities which follows 
from the broadening of spectral lines: ~ 30  50 km s 1.

Let us introduce dimensionless parameters (in the 
further text indexes “0” of physical parameters will be 
omitted for simplicity): 

,cos,
4

,,1,

||||||
2
||

2

||

2

||2
||

||

kckc
c
v

p
B

p
c

p
p

A

                      (19) 

,,
||||||

||
|| cp

SS
cp

S
S

2
2

2
1|| sin,cos,2 llSSS                        (20) 

Note that  is defined here inversely proportional to 
the often used “plasma beta”. By means of these 
parameters the coefficients 2,1,0a  and 2,1,0b  are defined 

as
2

1
2

0 21,1 Saa ,                       (21)     

,21 2
2 Sa                                                   (22) 

.343,2,31 2
||21

2
0 SbSbb        (23)

Having excluded  and P  from Eqs. (12-16) we 
receive  

,02

4
1

0

2

0

2
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1
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0

1
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a
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b
b

B
B

a
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B

B
B
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a
a

B
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k
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.0,0 Bkvkvk
B
B

B
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The k - and B -components of these vector 
equations are given by 

,02

4
11

0

1

0

2

1

2

||10

2
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2

1

2
2

B
B

b
b
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,021

0

1
2

0

2

|| B
B

b
b

B
BBvk

b
b

Bc
vB (27) 

.0,02
||

Bk
B

BBvk
Bc

vB                    (28) 

In analogy to usual MHD as used by Somov et al [36], 
there are two independent wave branches in the 
plasma: waves which do not compress the plasma 
( 0vdiv ), and waves compressing the plasma 
( 0vdiv ). In this paper we shall restrict ourselves to the 
wave modes uncompressing the plasma.  

Having inserted in Eqs. (26–28) the condition of 
incompressibility 0vk , and excluded the variables 

vB  and BB  we receive

Fig. 1. Increment/decrement of the instability normalized to  as a function of the anisotropy parameter  in the 

domain of the instability (left picture). In the right picture the phase velocity of the unstable modes |||| ckRV eph

normalized to is shown. The numbers on the curves are values of the propagation angle . These figures are asymptotic

limit cases of unstable solution of Eq. (31). 
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As far as 0B  the dispersion relation must be 
fulfilled: 

.0212
0

1
2

0

1

0

1
1

0

1

b
b

a
a

b
b

l
a
a  (30) 

This is a polynomial equation of 6th order in the 
frequency of the fluctuations. For the parameter 

||||1 kcZ  this equation can be written in the 

form
,001

2
2

3
3

4
4

5
5

6
6 cZcZcZcZcZcZc      (31) 

where 

126215

2114

21123

2112

121

120

2,2
,234

,223
,4234
,223

,23

llcllc
lllc

llllc
lllc

llc
llc

Here the dimensionless parameter ||043 cv  is 

introduced, by which the heat fluxes are defined: 
.2,|| SSS  In the usual isotropic MHD 

case only the Alfvén waves with 22
||

2
Avk  can arise, 

the phase velocities of which are equal to each other in 
both directions with respect to the magnetic field. So, 
instead of 2Z  in the isotropic MHD we have 
deduced now the 6-th order Eq. (32) in the anisotropic 
MHD. With the non-zero heat fluxes 0 , odd non-zero 

coefficients 531 ,, ccc  will result in wave propagation 
velocities depending on the direction of the magnetic 
field. We can expect prograde and retrograde wave 
modes. Let us first consider the most important limit cases 
of Eq. (32) which can be solved analytically. 

4. Limit cases 
4.1. Strong magnetic field 

Let us consider the case 2
||

2 cva  or the limit 

. Using the usual asymptotic expansion we find 
the six solutions of Eq. (31): 

1
2

2
11

6

5

6

2
1

2,1 c
c

c
iZ          (32) 

Here 1 and 06c should be obeyed. In the case 

1we have 22 cos12Z .
That means, 22

||
2

Avk  along the magnetic field, 

0 , and 22
||

2 2 Avk  across the magnetic field, 

2 . In the opposite case 1  we get an 

analogy to the inclined Alfvén waves, 222
Avk  . So, 

the solution (32) describes the prototype of the usual 
(isotropic) Alfvén waves. But for more realistic values of 
the anisotropy parameter )1(~ O  these mode 
becomes unstable. The instability condition is 

1
cos1
cos2

2

2
                                                                (33) 

Instability does not arise for waves propagating along 
the magnetic field, 0 . The growing time increases 
with the magnetic field and does not depend on . The 
second term in Eq. (32) defines the phase velocity of the 
unstable modes, which is independent from the 
magnetic field, but it depends strongly on . The 
instability increment and the phase velocity are defined 

Fig. 2. Increment/decrement of the instability d as a function of the anisotropy parameter  for the cases with 

fixed values of  and :  = 100 (left picture) and  = 10 (right picture).  
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as

.
)1(4
)34()Re(

,
)34(

114
)Re(
)Im(

6

2

||||

2
6

c
l

ck
V

l
cd

ph

                     (34) 

d  has both signs and Vph > 0, the unstable modes 
are running along the magnetic field. In Figs. 1 these 
parameters are shown in the instability range of . The 
instability growing increment (or damping decrement) 
has rather high values. The maxima of d  correspond to 
the minima of the phase velocities. For more inclined 
modes d  becomes larger and the minima of Vph

decrease. From the figures for different values of  and 
 the increments and phase velocities can easily be 

estimated. 
The other solutions of Eq. (31) present stable waves, 

,1:0)Im( 4,3Z

12
11222 222

6,5Z             (35) 

The first one is practically a symmetric slow wave with 
.|| Ahp vcV  The second solutions are strongly 

asymmetric stable waves, Vph > 0 means prograde 
waves, Vph < 0 retrograde waves. For  < 1 we have Z5 > 
0, that means prograde waves, and Z6 < 0 retrograde 
ones. In this case |Z6| > |Z5|, that means retrograde 
waves are faster. For  > 1 we get the opposite case: Z5

< 0 and Z6 > 0. In the range 1 <  < 2 prograde waves 
are faster, |Z6| > |Z5|, and for  > 2 we have |Z5| > 
|Z6|. =2 is a symmetric case, |Z5| = |Z6|. Anti-
symmetric features of waves are due to thermal fluxes. If 
the thermal fluxes are not included,  = 0, both waves 
have the same velocities, such as in the isotropic case. 
We found analytically the asymptotic solutions of Eq. (31) 
for . In this case only one pair of solutions is 
complex and can become unstable. 

Fig. 3. Increment/decrement of the instability d  as a function of the anisotropy parameter  for the cases with fixed values of 

and : = 1 (left picture) and  = 0.1 (right picture). 

Fig. 4. Two characteristic cases of phase velocity ||||)Re( ckVhp  as a function of the anisotropy parameter  for the cases with 

fixed values of  and : = 1 (left picture) and = 100 (right picture). 
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Fig. 7. Instability domain boundaries in the ( , ) plane for fixed values of  and . In the curves Im( ) = 0, these values are 

found as roots of Eq. (A.5). In the areas labeled with the mark “+” waves are unstable, and with “-” stable.  

Fig. 6. The case of large thermal fluxes,  = 100, where the instability growing rate Zim = Im(Z) in dependence on the anisotropy 

parameter  is shown. The left and right pictures correspond to the first and second solutions of Eqs. (38), respectively. The 

numbers on the curves are the values of .

Fig. 5. Absence of thermal fluxes,  = 0. The left picture is the phase velocity Vph = Re(Z) as a function of the anisotropy 

parameter  for the cases of fixed values  and . The numbers 1, 2, 3 on the curves correspond to the solutions 3,2,1 . The 

right picture is the instability increment rate Zim = Im(Z) for different values of  given on the curves. 
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Let us take from Figs. 1 one characteristic case, say  = 
0.25  and =1. For this case the exact numerical 
solutions of Eq. (31) can be found. The cases  = 100, 10, 
1, and 0.1 are demonstrated in Figs. 2 and 3, where the 
increments of the unstable waves are shown. 

For moderate values of  all the solutions become 
complex. For  > 300 the picture of instability tends to 
the asymptotic case as shown in Fig. 1. In these figures 
we see only three roots of the polynomial equation. The 
other three roots are symmetric with negative sign. Two 
characteristic cases of phase velocities are shown in Figs. 
4. For small and large values of  the solutions are more 
symmetric, prograde and retrograde modes have more 
or less the same velocities. Waves with |Vph|  1 
practically exist in all cases. A more complicated case is 
the range 1 <  < 2, where the anisotropy of the modes 
is strong. An anisotropic propagation of waves is a 
consequence of the thermal fluxes. Let us consider the 
two limit cases,  0 and , analytically.  

4.2. Special case  0 
Although the absence of fluxes, 0S  and 0||S ,

is far from reality, this simplified case has been 
investigated by other authors using the 13–moments 
equations. Putting = 0 into Eq. (31) we receive a cubic 

equation for 2Z :

002
2

4
3

6 cccc                                       (36) 

So we have only symmetric solutions, Z :

.
2
3

32
1

,
3

21
2

213,2

2
211

ssigss

gss
                    (37) 

Here ,93,, 2
21

233
1

2,1 ggqrqrs

.,,

,2763

600621642

3
2021

ccgccgccg

ggggr

The analytical solutions 21 , , and 3  allow to 
investigate them in more detail in dependence on the 
parameters , , and . For low values of 1  is real 

and positive, but the 3,2  values are complex conjugate 

functions. Some characteristic cases are shown in Figs. 5. 
For small  1 there appear two ranges of , where the 
waves become unstable, 0)Im(Z . These instability 
domains are in the < 1 and > 1 regions. With 
increasing  the left instability domain becomes narrow 
and is shifted to the point = 1. The right domain is 
shifted from this point away to the right-hand sight. With 
further increase of  in the right domain the instability 
disappears, Im(Z)  0. For large values of  ( >> 1 for 

< 1 and >> 2  for  > 1) the first solution of 

2
1

1Z  passes to the solution (32), which is the 
prototype of Alfvén waves. The reason is that for such 
large  we get )Re()Re( 21 ss  and )Im()Im( 21 ss , so 

01  and 03,2
. In the subsequent section we 

investigate the dependence of the parameters 
determining the conditions for the appearance of the 
instability. For the present case = 0 this condition is Eq. 
(41) which describes the points of Im(Z) = 0 in Figs. 5. 

4.3. Highly anisotropic wave propagation  
The more realistic case  >> 1 is also of interest. We 

have already seen that for large  values  0makes 
the wave propagation velocities strongly anisotropic with 
respect to the magnetic field direction. In the limit   >> 
1 we have the following asymptotic solutions of Eq. (31): 

5

51
2
332

0

3
2
05

2
0

0
2
02

4
04
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06

0

2
4

,
)2(2

c
cccc

Z

cZcZ
cZcZcZcZZ

                         (38)  

The four asymptotic solutions, which are included in 
Eqs. (38), are symmetric with respect to the phase 
velocities, but they are highly unstable. Some 
characteristic pictures for the instability growing rates of 
these solutions are shown in Figs. 6. It is seen that with 
increasing  the instability areas are shifted to the 
region  > 2. 

The remaining two solutions of Eq. (31) describe 
stable, but highly anisotropic modes with slow and high 
phase velocities:   

2
5

6354

6

5
6

2
1

3021

2

1

0

1

0
5 ,

c
cccc

c
cZ

c
cccc

c
c

c
cZ

                           (39) 

These asymptotic solutions can be used for moderate 
values of . In the limit  >> 1 we have four stable 
and two unstable solutions. We consider here only 
complex solutions describing instability: 

2
2

12 ll
iZ                                             (40) 

In this case the instability range is 21122 lll .
This condition is obeyed only for the propagation angles 

4
0 .

The asymptotic solutions which are valid for large 
are in good agreement with the exact numerical 
solutions of Eq. (31). They can simply be handled. 

5. Domains of instability 
The coefficients 61.....cc  of Eq. (31) are real functions 

of the magnetic field parameter , of the anisotropy 
parameter , of the thermal flux parameter  , and of 
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the wave propagation angle . In dependence on 
these parameters the solution ,,,Z  can become 
complex, otherwise an instability will arise. Formally in this 
case an exponential damping and a growing of the 
wave amplitudes exist at the same time. This is because 
the nonzero imaginary part of the solution of Eq. (31) has 
both signs. In the Appendix we derive analytically the 
general condition for which the instability can exist. The 
parametric equation 0,,,D  in Eq. (A.5) (See: 
Appendix) defines the boundaries of the instability 
domain. If thermal fluxes are absent which is fitted by the 
limit case = 0, Eq. (A.5) is drastically simplified.  

We have   
= 1, 0212 116 llc ,

and
0492227 2

462
2
262

2
440

2
6

2
00 cccccccccccD . (41) 

In the instability domains D > 0. This idealized case is 
shown in Figs. 7. Instability areas are labeled by the sign 
“+”. The line  = 1 divides the areas into two parts. With 
increasing  the instability disappears. The differences 
of these results from the corresponding results of Baranov 
and Krasnobayev [31] and, Kuznetsov and Oraevskii [33] 
are probably due to the more general equations which 
we are using here. 

A physically more interesting range of parameters 
with 0  for the instability areas is also shown in Figs. 7. 
In this case all conditions are more complicated. For the 
given set of parameters we can get one, two, or all three 
pairs of complex solutions. The condition Eq. (A.5) 
includes all of these situations. Every point in these curves 
corresponds to the boundary of the instability domain. 
The thermal flux case 0  make the areas very 
complicated, especially for strong magnetic fields, 

>>1. All the increments or instability rate regions shown 
in the pictures above as examples are described by the 
general Eq. (A.5). 

6. Concluding remarks 
Our approach has been motivated by earlier and 

recent coronal spectral line observations, which suggest 
that the following three unresolved coronal physics 
problems have probably a common origin:  

i) a broadening of coronal line profiles due to some 
permanent turbulent motions, which exist globally 
everywhere; 

ii) the sources of coronal heating are independent 
from the magnetic activity phase and to a minor extent 
from the magnetic configurations; 

iii) the particle acceleration and the solar wind 
problems seem to have the same origin. 

We prefer here the idea of the wave mechanism. In 
spite of so much theoretical efforts based on the 
isotropic MHD equations, the problems remained 
unsolved. The usual MHD equations are derived 
assuming that the plasma is still collision-dominated and 
the gas pressure is isotropic. However, this approximation 
cannot work satisfactory in a rarefied hot magnetized 
plasma.  

Of course, the best way is the use of the kinetic 
Boltzmann-Vlasov equations avoiding usual MHD. 

However, the solution of these nonlinear integro-
differential equations written for each plasma 
component in the 6-dimensional phase space of (u, r) is 
extremely difficult. Besides, we are not interested in any 
small-scale plasma wave turbulence. We have to study 
the plasma motions integrated over large space and 
time scales (this is done by applying the MHD equations 
in usual cases). For this aim we use the 16–moments 
transport equations, derived as integrated moments of 
the kinetic equations. In earlier similar attempts the 13–
moments equations have been used. However, these 
equations without any motivations exclude the 
appearance of the thermal fluxes and they are therefore 
incomplete.  

Anisotropy is the main feature of a collisionless 
plasma with a strong magnetic field ( Bie r, ). Within 

large enough time intervals, t , both the electron and 
the ion components of the plasma tend to reach a 
steady Maxwellian distribution. If there would be no 
external magnetic field, an isotropic state would be 
reached. However, the magnetic field results in non-
uniform distributions of speeds, uu|| , that leads to an 

anisotropy in the impulses of particles. In the present 
study the pressure anisotropy is described by the 
parameter  and heat fluxes by . Taking = 0 we do 
no pass to the 13–moments equations, or taking = 1 
and  = 0 we do no pass to the isotropic MHD case. The 
16–moments equations are in principle different 
equations. Using these equations we have shown that a 
wide unstable and stable wave spectrum in the 
collisionless anisotropy plasma is possible, even in the 
incompressible approximation. If  0  (heat fluxes are 
present) the waves run along and against the magnetic 
field with different speeds. This behavior is different from 
the usual isotropic MHD case. This spectrum range is 
strongly dependent on the magnetic field value 
(parameter ), on the pressure anisotropy parameter ,
on the heat fluxes parameter , and on the wave 

propagation angle  with respect to the magnetic 
field. The deduced instability increments are rather large. 
We have obtained the general instability condition. 

Let us consider some example of the instability 
growing time for coronal values. In accordance with 
observations it is probable that the ions (protons and 
heavy ions) are heated more strongly in the direction 
across the magnetic field than along it: .1||TT
Some observations of the solar wind (see, e.g., Marsch 
[20]) detected an electron temperature anisotropy with 
an opposite relation: ee TT || . In the corona the ion 

temperature anisotropy results in an anisotropy of the 
partial gas pressure and thus of the total pressure, 

ie ppp . If we take ie nn  and iee TTknp ,

then |||| TTTTpp ee . To estimate  we 

should know the relation between Te and ||,T .

Four cases should be considered: 
1) ||TTe  and then 5.021 ;
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2) TTe  and then 212 ;
3) 2||TTTe  and then ,331  where 

0.33 <  < 3; 

4) 2||
22 TTTe

and ,2121 22

where 2121
1

.
The first version is perhaps the most probable one. In 

any case let us take  = 1.5. Let also B0 = 3G and Te = 
106 K. Then  10 and ~|| scc 100 km s 1. We assume 

||0 ~ cv  and then   ~1. So from Figs. 2 we see that for 

such parameters d  0.3 and Vph ~ 1. d  0.3 means that 
Pw/tins ~ 2, where Pw is the wave period, and tins is the 
characteristic growing time. For Pw ~ 5 min we have a 
transverse wavelength of  ~103 km. These estimates 
belong to the oscillation range observed in coronal 
loops [7] (see Section 1). Quickly growing modes will 
likely disappear due to nonlinear dissipation.  

In a collisionless approach under the influence of an 
external magnetic field we should, strictly speaking, 
consider the equations for four different temperatures, 

TT|| and ie TT . However, on real conditions the 

relaxation time of particles is small enough, 
ie,

. Thus, 

the balance between ion and electron temperatures is 
quickly restored, and the anisotropic temperatures with 
respect to the magnetic field become more important.  

In subsequent studies the present work should be 
extended to the compressible case and to the 
consideration of radiative losses, such as it has been 
done by Somov et al [36] for isotropic MHD. 
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Appendix A: Dependence of the instability 
domains on the parameters  

Let us consider a polynomial equation of degree N
with real coefficients cN:

0
0

N

n

n
n ZcP                                                           (A.1) 

Here the coefficients are functions of several 
parameters, say ,,  and . Physically instability is 
possible only if the solutions become complex, because 
Z is a dimensionless wave frequency. As the coefficients 
are real the complex solutions of Eq. (A.1) are 
conjugated: Z = x ± iy. For x and y we have two 
equations: 

0Im1,0Re 21 P
y

fPf                                 (A.2) 

where .;;,;; 2211 yxcffyxcff jj  The boundaries 

of the instability domains are defined by the equations 
00;;1 xcf j  and 00;;2 xcf j . So we get from Eq. 

(A.1) the following two equations: 
N

n

n
n

N

n

n
n xncxc

0

1

0
0,0                                     (A.3) 

To verify this statement let us first test the quadratic 
equation case: N = 2. In this case Eq. (A.1) has two 
solutions: 

20
2
112 42 ccccZc . The instability appears 

if the condition 20
2
1 4 ccc  is fulfilled. In this case the 

boundaries of the domain of instability are given by the 
parametric equation 04,,, 20

2
1 cccD . For 

this sample Eqs.(A.3) are 
02,0 21

2
210 xccxcxcc

Excluding here the variable x we can get the same 
domain equation 0,,,D .

The same procedure can be applied to the more 
general case when N is an arbitrary number. For our 6 th-
order wave dispersion Eq. (31) N = 6. If we exclude x from 
Eqs. (A.3) in this case we receive the necessary condition 
for the wave instability. 

Let us take ,6,...,0,61 jcjd jj
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Then we have the final parametric equation for 
boundaries of the instability domain to be determined: 

0,,, 0
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