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Abstract: Solar azimuth may become indefinite at sunrise and sunset. This discrepancy 

is corrected in the present work. The correction concerns application of Fourier–series 

analysis to the solar paths over a site during days when the problem arises. The result is 

the derivation of a new curve that is fitted with great accuracy to the daily solar azimuth 

values, thus bridging the gap of the discontinuity. A demonstration for the solar azimuth 

correction is given for 3 sites around the world (Athens, Stockholm, and Sydney). The 

correction can be applied to any solar geometry code; in this work the algorithm of the 

XRONOS code is selected without (XRONOS.bas, a BASIC programme) and with 

(XRONOS.m, a MATLAB code) the correction proposed. A corrected expression for 

the atmospheric refractive index at various altitudes is given in Appendix A as the 

refraction of solar right is treated in XRONOS 
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1. Introduction 

An exact estimation of the position of the 
sun in the sky at any location on earth is a prime 
task for any solar radiation scientist or solar 
energy engineer. This occurs because solar 
radiation is required to be estimated via 
modelling most of the time due to the scarcity 
of solar radiation measuring stations worldwide 
(Katiyar & Pandey, 2013). The exact position 
of the sun in the sky is a key parameter for an 
accurate estimation of its instantaneous 
intensity, which, in turn, may result in an 
accurate assessment of the solar potential at the 
location after integrating the instantaneous 
values over time (e.g., hours, months or years). 

To calculate the solar position in the sky, 
various algorithms have been developed. These 
algorithms are either in the form of an on-line 
tool (e.g., the Sun Path Chart available at 
http://solardat.uoregon.edu/SunChartProgram.
php, the Sun Position Calculator available at 
https://www.volker-

quaschning.de/datserv/sunpos/index_e.php, or 
the Logiciel CalSol in the French language 
available at http://ines.solaire.free.fr) or in the 
form of a code; such codes are the SUNAE 
algorithm (Walraven, 1978) and its 
modifications (Walraven, 1979; Archer, 1980; 
Muir, 1983; Wilkinson, 1983), which  resulted 
in the renamed XRONOS code (Kambezidis 
and Papanikolaou, 1990; Kambezidis and 
Tsangrassoulis, 1993); also, the SPA code 
(Reda and Andreas, 2004), the PSA code 
(Blanco-Muriel et al., 2001), the ENEA code 
(Grena, 2008), the Michalsky algorithm 
(Michalsky, 1988), and the 1971 Spencer 
calculations. Recently, Zhang et al., (2021) 
proposed a new mathematical formula, which 
introduces the notion of the sub-polar point and 
calculates the solar vector. 

The accuracy of the various tools and 

algorithms varies. The present work focuses on 

those codes that are applications running on a 

PC. The Spencer formula has a maximal error 
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greater than 0.25o, later reduced to 0.02o. The 

SUNAE had an error of 0.013o reduced to 

0.001o in XRONOS; the Michalsky algorithm 

has the disadvantage of time limitation in the 

accuracy of calculations (1950-2050), while 

the PSA code works correctly for the period 

1995-2015. The SPA code has a maximum 

error of 0.008o, while the ENEA one of less 

than 0.0003o, but its cost is complexity as it 

requires a large number of intrinsic 

calculations. Therefore, it seems that the 

XRONOS code, though a simple-to-use 

algorithm, provides sufficient accuracy to solar 

radiation modellers, and moreover to solar 

energy engineers. The XRONOS code is an 

embodied routine in the Meteorological 

Radiation Model (MRM, e.g., Kambezidis et 

al., 2000, 2017; Kavadias et al., 2014), as the 

MRM, as any solar radiation model, pre-

requires the calculation of solar geometry 

before the estimation of the value of solar 

radiation. Nevertheless, recently a 

discontinuity error was detected in XRONOS 

regarding the calculation of solar azimuth at the 

moments of sunrise and sunset. This 

discontinuity is related to the analytical 

expressions that calculate the solar azimuth. 

The aim of the present study is, therefore, to 

provide corrected expressions for this 

parameter. 

 

2. Description of the Discontinuity 
The initial SUNAE algorithm was 

implemented as a FORTRAN programme (i.e., 
SUNAE.for). The modified SUNAE, which 
has been renamed to XRONOS (XRONOS 
means time in Greek, X is pronounced CH), 
was first implemented as a routine written in 
the BASIC programming language (i.e., 
XRONOS.bas). The recent correction to the 
solar azimuth was made in the MATLAB 
environment and, therefore, XRONOS is a 
MATLAB routine now (i.e., XRONOS.m). 

The expressions for estimating the solar 
altitude, γ, and solar azimuth, ψ, at any moment 
over any location on earth are the following 
(Kambezidis, 2012): 

sin 𝛾 =  sin 𝜑 ∙ sin 𝛿 + cos 𝜑 ∙ cos 𝛿 ∙ cos 𝜔, (1) 

sin 𝜓 =
sin 𝛾 ∙ sin 𝜑 −  sin 𝛿

sin 𝛾 ∙ cos 𝜑
, (2) 

where φ is the geographical latitude of the 
location given by the user, δ is the solar 
declination, and ω is the hour angle, all in 
degrees; γ varies in the range [-90o, +90o] with 
positive after sunrise and negative values after 
sunset (i.e., above and below the local horizon, 
respectively); ψ lies in the interval [-180o, 
+180o] with positive after and negative values 
before solar noon (i.e., ψ = 0o when the sun is 
over the local south of the observer); φ varies 
in the range [-90o, +90o] with positive in the 
northern and negative values in the southern 
hemisphere; δ is in the range [-23.5o, +23.5o] 
throughout the year, and ω varies in the interval 
[-90o, +90o] with positive after and negative 
values before solar noon (i.e., ω = 0o when the 
sun is over the local south of the observer). The 
analytical relationships for the calculation of δ 
and ω are (Walraven, 1978): 

sin 𝛿 = sin 𝜀 ∙ sin 𝐿𝑂𝑁𝐺, (3) 

𝜔 = 𝑟𝑎 − 𝑠, (4) 

𝜀 = 23.442 − 3.56𝑥10−7 ∙ 𝑡𝑖𝑚𝑒, (5) 

𝑡𝑖𝑚𝑒 = (𝑌𝐸𝐴𝑅 − 1980) ∙ 365 + 𝑖𝑛𝑡 (
𝑌𝐸𝐴𝑅 − 1980

4
)

+ 𝐷𝑂𝑌 − 1 + 
𝑡

24
 , 

(6) 

𝑡 = 𝐻𝑂𝑈𝑅 + 
𝑀𝐼𝑁

60
+ 𝛧𝛰𝛮𝛦, (7) 

𝑠 = 𝑠𝑡 + 15 ∙ 𝑡 −  𝐿𝑂𝑁𝐺, (8) 

𝑠𝑡 = 1.759335 + 2𝜋 ∙ (
𝑡𝑖𝑚𝑒

365.25
) − (𝑌𝐸𝐴𝑅 − 1980), (9) 

where ε is the angle between the ecliptic plane 
and the plane of the celestial equator (in 
degrees), and LONG, ZONE are the 
geographical longitude and time zone of the 
location, respectively, (in degrees, positive 
west and negative east of the Greenwich 
meridian) given by the user; the function 
int(…) delivers the integer value of the 
argument; DOY is the day of the year (1 for 1 
January, 365, or 366, for 31 December in a non-
leap, or leap, year), while the variables YEAR, 
HOUR, MIN are the year, hour, and minute for 
which the calculations are to be made and are 
provided by the user. 
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In the above equations, the atmospheric 
refraction has been neglected. Since this factor 
is important in the calculations of solar altitude 
(or solar elevation) and solar azimuth, this 
effect must be considered in Equation (1). 
Therefore, for more accurate estimation of the 
γ and ψ values the following expressions 
replace Equations (1) and (2) (Kambezidis & 
Papanikolaou, 1990): 

𝛾 = 𝑒𝑡𝑠 + 𝑟𝑒𝑓, (10) 

tan 𝜓 =
𝜃

√|1 −  𝜃2|
 , (11) 

tan 𝑒𝑡𝑠 =
1

√(1− 𝑞2)
, q = sin 𝛾, (12) 

𝑟𝑒𝑓 = 3.5163977 ∙
0.1594 + 0.0196 ∙ 𝑒𝑡𝑠 + 0.00002 ∙ 𝑒𝑡𝑠2

1 + 0.505 ∙ 𝑒𝑡𝑠 + 0.0845 ∙ 𝑒𝑡𝑠2
 , (13) 

  

𝜃 =
cos 𝛿 ∙ sin 𝜔

cos 𝛾
. (14) 

The above expressions give accurate values 
for γ and ψ. Nevertheless, the estimation of ψ 
at the moments of sunrise or sunset may deliver 
a discontinuity. Indeed, Equation (14) 
becomes indefinite (θ = ∞) when cosγ = 

cos(±90o) = 0. Therefore, Equation (11) 

presents a discontinuity in ψ because of θ 

= ∞. 
To demonstrate the mentioned problem, 

use of the XRONOS code was made. Figure 1 
deploys the solar path on 3 days of 2021 for 
Athens (i.e., the solar equinox of 21 March, the 
summer solstice of 21 June, and the winter 
solstice of 21 December). The discontinuities 
occur for values of ψ around -90o and +90o. For 
the winter solstice the discontinuities occur 
well before sunrise and well after sunset (i.e., 
below the local horizon); therefore, they do not 
affect any solar radiation estimations. On the 
contrary, the ψ discontinuities on the spring 
equinox (and moreover the autumn one, not 
shown here) are happening just about sunrise 
and sunset (i.e., the local horizon) and may 
create some problems in solar radiation 
calculations. As regards the summer solstice, 
the discontinuities occur well above the local 
horizon (i.e., well after sunrise or well before 
sunset) and create miscalculations. Figure 1 

gives a schematic diagram in which the daily 
paths over Athens are depicted for the 3 
selected days. 

 

 
Figure 1. Daily paths of the sun in the sky of Athens 
on 21 June (summer solstice), during the equinoxes 
(21 March or 21 September), and on 21 December 
(winter solstice). N = north, S = south, E = east, W 
= west. The solar azimuth arc, ψ, measured from S 
on the local horizon, is less than, equal to, and 
greater than 90o at sunrise on the winter solstice, 
the two equinoxes, and the summer solstice, 
respectively. The indicated values of ψ are absolute 
ones because the minus sign (sign by convention to 
the east of the NS line) has been removed for 
easiness. The highest positions of the sun on the 3 
paths refer to the 12:00 solar time (they lie in the 
meridian plane). 
 

3. Correction of the Discontinuity 
To overcome the discontinuity problem in 

solar azimuth calculations during the 
implementation of the XRONOS algorithm in 
particular, the Fourier-analysis methodology 
was applied to the problematic data time series. 

The major advantage in applying a Fourier 
analysis to a data time series is that it can be 
used when a regression function cannot be 
established for the time series in question. In 
such cases, the unknown form of the data time 
series can be analysed and given in the form 
of sines and cosines. What is unknown since 
the beginning of the process is the optimum 
number of terms in the Fourier analysis that 
will effectively simulate the data time 
series. For the purpose of the present work, the 
lsqnonlin MATLAB routine was used. This 
function solves non-linear least-squares curve-
fitting problems by minimising the square of 
the 2nd norm of the given function (i.e., the 
Fourier series). In the present study, a 6th-order 
Fourier-series function was eventually selected 
and used in XRONOS.m.  Figure 2a is an 
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example of the solar azimuth discontinuities for 
the site of Athens observed at 16:30 LST during 
2021. Figure 2b shows the result of applying 
the lsqnonlin routine to the solar azimuth data 
series and filling the discontinuity gaps. 

 

 
(a) 

 
(b) 

Figure 2. Solar azimuth values for Athens (φ = 

37.96o N, λ = 23.71o E) at 16:30 LST within the 

year 2021; (a) discontinuities from XRONOS.bas, 

and (b) recovery of discontinuities from 

XRONOS.m (red line). N = northern hemisphere, E 

= east of the Greenwich meridian, φ = geographical 

latitude (LAT in XRONOS.m), λ = geographical 

longitude (LONG in XRONOS.m). 
 
 

For a complete picture of the solar azimuth 
discontinuities, Figure 3 shows them in the 
form of annual solar analemmas for 3 selected 
sites in the northern and southern hemisphere. 
These analemmas were derived by using the 
XRONOS.bas algorithm providing the hourly 
values of γ and ψ for the whole 2021. On the 
contrary, Figure 4 shows smooth yearly solar 
analemmas for 2021 after implementing the 
lsqnonlin routine in the XRONOS.m algorithm 
for the above 3 cities. 

 
 

3. Conclusions 
The present work identified the problem of 

discontinuities in estimating solar azimuth. The 
discontinuity occurs on any day of the year at 
instances after sunrise or before sunset when ψ  

 
(a) 

 
(b) 

 
© 

Figure 3. Solar analemmas for the year 2021 
over (a) Athens (φ = 37.96o N, λ = 23.71o E), 
(b) Stockholm (φ = 59.32o N, λ = 18.07o E), 
and (c) Sydney (φ = 33.86o S, λ = 151.19o E) 
by using XRONOS.bas. The red circles show 
the solar azimuth discontinuities at ψ = ±90o. 
N = northern hemisphere, S = southern 
hemisphere, E = east of the Greenwich 
meridian, φ = geographical latitude (LAT in 
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XRONOS.m), λ = geographical longitude 
(LONG in XRONOS.m). 

 
is equal to ±90o. The problem was explained by 
analytical expressions and diagrams. The 
solution to the discontinuities was provided by  

 
(a) 

 
(b) 

 
© 

Figure 4. Solar analemmas for the year 2021 
over (a) Athens (φ = 37.96o N, λ = 23.71o E), 
(b) Stockholm (φ = 59.32o N, λ = 18.07o E), 
and (c) Sydney (φ = 33.86o S, λ = 151.19o E) 
by using XRONOS.m. No analemma 
discontinuities are now observed at ψ = ±90o. 
N = northern hemisphere, S = southern 
hemisphere, E = east of the Greenwich 

meridian, φ = geographical latitude (LAT in 
XRONOS.m), λ = geographical longitude 
(LONG in XRONOS.m). 

 
applying a Fourier-series analysis to the whole 
daily path of the sun on the day under question 
and by deriving a smooth curve without 
discontinuities. 

The issue was demonstrated for 3 sites in the 
northern and southern hemisphere (i.e., Athens, 
Stockholm, and Sydney); for these cities, solar 
analemmas for 2021 were produced with and 
without discontinuities in ψ by using the 
XRONOS.bas and XRONOS.m algorithms, 
respectively. 

Further, the corrected expressions for the 

atmospheric refraction, ref, used in the 

XRONOS.m algorithm are provided in 

Appendix A. 
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Appendix A 
This section provides a discussion about 

Equation (13), which calculates the 
atmospheric refraction effect on solar altitude. 
Unfortunately, this expression assumes that the 
solar geometry calculations are made for sites 
at sea level or even low-level altitudes. For sites 
at high altitudes (above ≈200 m asl, asl = above 
sea level), the calculations may be erroneous 
because lower and lower air density with 
altitude results in more and more bending of the 
solar rays. This effect has not been accounted 
for in Equation (13). Therefore, this section 
refers to this correction, which is implemented 
in the XRONOS.m algorithm. 
According to Karttunen et al. (2016) the 
expression for the atmospheric refraction, ref, 
at various altitudes, z (in m asl), is given by the 
equations: 

𝑟𝑒𝑓 =  
𝑃𝑧∙0.00452∙tan(90−𝛾)

273+𝑇𝑧
 , for γ > 15o (A1a) 

𝑟𝑒𝑓 =
𝑃𝑧∙(01594+0.0196∙𝛾+0.00002∙𝛾2)

(273.15+𝑇𝑧)∙(1+0.505∙𝛾+0.0845∙𝛾2)
 , for γ ≤ 15o (A1b) 

where Pz is the barometric pressure (in hPa), 
and Tz the air temperature (in oC) at altitude z. 
An alternative expression to Equations (A1a) 
and (A1b) is by replacing the coefficient 
3.5163977 in Equation (13) with the ratio Pz/Tz; 
the new expression for ref is, therefore, the 
following and this is used in XRONOS.m: 

𝑟𝑒𝑓 =
𝑃𝑧

𝑇𝑧
∙

0.1594+0.0196∙𝑒𝑡𝑠+0.00002∙𝑒𝑡𝑠2

1+0.505∙𝑒𝑡𝑠+0.0845∙𝑒𝑡𝑠2  . (A2) 

It should be noted here that the coefficient 
3.5163977 in Equation (13) is just the ratio 

P0/T0 = 1013.25/288.15 ≈ 3.5163977 hPa∙K-1, 
which calculates ref at sea level. 

Equation (A2) requires the knowledge of Pz 
and Tz. If these values cannot not be found or 
retrieved, then use of the following 
approximate formulas can be made (Gipe, 
2016). 

𝑃𝑧 =  𝑃0∙(
𝑇0 − 𝑇𝑧

𝑇0

)
𝑔
𝑅  , (A3a) 

𝑅 =
6.5 ∙ 𝑧

1000
 , (A3b) 

where P0 is the baromatric pressure at sea level 
(taken as 1013.25 hPa or sometimes 1000 hPa), 
g is the acceleration due to gravity (equal to 
≈9.81 m∙s-2), T0 is the air temperature at sea 
level (equal to 288.15 K), Tz is the air 
temperature at altitude z, and R is a scaling 
factor that takes into account the adiabatic lapse 
rate of 6.5 oC per 1000 m altitude. 

If the estimation of Pz and Tz would be to be 
avoided, then use of the following approximate 
calculations can be made (Lunde, 1980; 
Berberan-Santos et al., 1997; Karttunen et al., 
2016). These expressions were used in 
XRONOS.m for deriving the results in Figs. 
4a,b,c, because of unknown values of Pz and Tz 
at the 3 sites. 

𝑃𝑧 =  𝑃0∙𝑒
−

𝑧
8435.2 , (A4a) 

𝑇𝑧 =
6.5∙𝑧

1000
+ 𝑇0 . (A4b) 

 


