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Abstract: There are many models describing ELF radio propagation in the uniform Earth-ionosphere cavity. One of the 
most popular models is the knee model by Mushtak and Williams (2002). Unfortunately, this model only verbally describes 
the relevant conductivity profile of atmosphere, which is obligatory in the direct computational techniques. We introduce 
a conductivity profile based on this description and derive the related frequency dependence of complex propagation 

constant (f) using the rigorous full wave solution (FWS). Then, for the first time the Schumann resonance (SR) spectra for 
the same atmospheric conductivity profile are compared to those by different computational techniques. In two of them 

we use the formal zonal harmonic series representation (ZHSR) for the fields with the propagation constant (f) found 
either from the knee model formulas or from the FWS for the relevant conductivity profile. The third technique is based 
on the direct three-dimensional finite difference time domain (FDTD) technique with the same conductivity profile. 
Comparison reveals that the FWS and FDTD results are practically coincident in the whole SR band. The knee model 
spectra are close to those of FWS and FDTD data in the vicinity of the first SR mode, whereas deviations from the rigorous 
solutions proportionally increase with the frequency. Special attention is paid to the characteristic heights of ionosphere 
that provide coincident results for the FDTD spectra and the ZHSR spectra with FWS propagation constant.  
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1. Introduction 
In the standard description of the sub-ionospheric 

radio wave propagation in extremely low frequencies 

(ELF: 3 Hz – 3 kHz), the propagation constant (f), the 

angular source–observer distance , and the current 

moment of the dipole source are necessary. Vertical 

electric and horizontal magnetic fields are found from 

the following expressions in the horizontally uniform 

isotropic Earth–ionosphere cavity under the exp (+it) 

time dependence (e.g. Galejs, 1972; Nickolaenko and 

Hayakawa, 2002, 2014): 
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where a is the Earth’s radius;  is the angular distance 

from the source; MC() is the current moment of the 

vertical dipole source being independent of 

frequency; (f) is the propagation constant; h is the 

effective height of the ionosphere; P[cos( – )] and 

P
1[cos( – )] are the Legendre and associated 

Legendre functions of complex order . The vertical 

electric dipole source of the field is positioned at the 

pole (r = a,  =0) of the spherical polar coordinate 

system (r, , ) with the origin at the Earth’s center. The 

Legendre functions are expanded into infinite series on 

the Legendre polynomials regarded as zonal harmonic 

series representation (ZHSR). Such series were 

suggested and used for computations of the 

Schumann resonance (SR) fields with an account of 

200 terms by Jones (1970). Later, the presentations 

were obtained with accelerated convergence, and 

the relevant material might be found in Nickolaenko 

and Hayakawa (2002, 2014). In the present paper, we 

use the Jones and Burke (1990) acceleration algorithm.  

The role of propagation constant is especially 

important, which depends on the atmospheric 

conductivity profile up to about 100 km. Therefore, 

significant efforts were directed to its precise deducing. 

For this purpose, the models of stratified multi-layered 

ionosphere were used (Jones, 1967, Hynninen and 

Galuk, 1972, Bliokh et al., 1977,) that exploited the full 

wave solution (FWS). This approach was rather 

complicated since it demanded extended 

mailto:hongjue_zhou@sina.com.cn
mailto:galyuck@paloma.spbu.ru
mailto:hayakawa@hi-seismo-em.jp
mailto:sasha@ire.kharkov.ua


H.J. Zhou, M. Hayakawa, et.al, Conductivity profiles corresponding to the knee model and relevant SR spectra 

 66 

computations, which was a serious obstacle in the pre-

PC era. Besides, the knowledge of the conductivity of 

mesosphere was rather poor, therefore, the 

“engineering’ formulas were used for the  (f) functions 

based on the SR observations. The simplest, although 

precise enough one, was the linear dependence (see 

Nickolaenko and Hayakawa, 2002, 2014). The 

commonly accepted nonlinear frequency 

dependence  (f) of the propagation constant has 

been suggested by Ishaq and Jones (1977) as shown in 

the following equations:  

(f) = [0.25+(kaS)
2
]

1/2
 – 0.5,  (3) 

S = c/V – i5.49/f,  (4) 

c/V = 1.64 – 0.1759ln(f) + 0.01791[ln(f)]
2
,  (5) 

 = 0.063f 
0.64

.  (6) 

where f is the frequency in Hz, k is the free space wave 

number, S is the complex sine of the Brillouin waves 

propagating in the Earth–ionosphere waveguide (e.g., 

Wait, 1970), V is the phase velocity of radio wave, and 

 is the parameter accounting for the wave 

attenuation. For the exp (+it) time dependence, the 

positive sign of the root in equation (3) must be chosen, 

which guaranties attenuation of propagating radio 

waves. We use equations (3)–(6) in the following as the 

standard reference model.  

It is obvious from the above that both in the field 

computations and in the interpretation the 

atmospheric conductivity profile (h) is redundant. 

One can use the regular expressions (1)–(6) and 

compute the electromagnetic fields for the given 

current moment of the source and the ionosphere 

effective height h. But when solving the SR problem 

with the numeric techniques, like the finite difference 

time domain (FDTD) technique which has been widely 

used in the past decade for modeling the ELF wave 

propagation in the Earth-ionosphere cavity supported 

by the fast development of the computer resources 

(Hayakawa and Otsuyama, 2002; Otsuyama et al.2003; 

Otsuyama and Hayakawa, 2004; Simpson and Taflove, 

2004; Yang and Pasko, 2005, 2006, 2007; Navarro et al, 

2008; Simpson et al., 2006; Zhou et al., 2013a, 2013b, 

Zhou and Qiao, 2015), one has to introduce the 

atmospheric conductivity profile (h) within the 

altitudes from 0 to 100 km. Unfortunately, such 

information is scarce. Knowing this, the paper aims to 

suggest a conductivity profile of the regular 

atmosphere that might be applied in the FDTD 

computations. 

In this paper, since the formal problem of finding 

the (f) dependence for an arbitrary conductivity 

profile (h) remains unresolved, we will address the 

approximate nature of the (f) models first, including 

the single-scale exponential model, two-scale 

exponential model, and the knee model. Among these, 

the knee model is believed to be the most accurate 

one in the SR range, but there is no conductivity profile 

(h) corresponding to the successful heuristic knee 

model. By using the verbal description of the knee 

model by Mushtak and Williams (2002), we will 

construct the corresponding profile of atmospheric 

conductivity (h) and apply this function in the FDTD 

technique. Concurrently with the formulas of the knee 

model by Mushtak and Williams (2002), the 

propagation constant (f) will be found using rigorous 

FWS. The SR spectra will be obtained and compared to 

those by corresponding three different techniques. In 

two of them we use the formal ZHSR for the fields with 

the propagation constant (f) found from the knee 

model formulas and from the FWS for the relevant 

conductivity profile. The third one is based on the 

rigorous direct FDTD technique with the same 

conductivity profile. For the first time the comparison is 

made of computational data obtained in direct FDTD 

technique and in the framework of classical FWS-ZHSR 

for the same atmospheric conductivity profile. The 

characteristic height of ionosphere in the ZHSR 

formulas will be discussed in the end.  

2. Approximate models of conductivity profile 
and ELF propagation parameter  

2.1. Single-scale exponential model 

The approximate link between the propagation 

constant (f) at a fixed extremely low frequency f (ELF: 

3-3000 Hz) with parameters of the exponential profile 

(h) for the flat geometry was suggested by Greifinger 

and Greifinger (1978). Long before this work, the 

exponential conductivity profile of the lower 

ionosphere was used at very low frequencies (VLF: 3-30 

kHz) (Wait and Spies, 1964, Galejs, 1972). However, 

transition to ELF has completely changed the way in 

which the parameters of the profile were used. The 

approximate relations for the (f) function were 

suggested by Greifinger and Greifinger (1978) after 

detailed rigorous analysis of the problem. These 

formulas involved the so-called “electric” and 

“magnetic” characteristic heights of the particular (h) 

profile and relevant scale heights at these altitudes.  

The lower, “electric” height hE at a given frequency 

f is found from the condition that the conduction and 

displacement currents are equal at this height. This 

means that the point is found at a given conductivity 

profile where the following condition is held:  

E(hE) = 0,   (7) 

where  = 2f is the circular frequency and 

0 = 8.8541871012 F/m is the permittivity of free space.  

The upper, “magnetic” height hM is found in a 

similar way. At this altitude the wavelength in the 

plasma at the frequency f is equal to the local scale 

height M, so that the condition acquires the following 

form:  

M(hM)= [40M
2
]
1

,   (8) 

where 0 = 4 107 H/m is the permeability of free 

space. After finding the characteristic heights and 

height scales, one can calculate the complex 

propagation constant: 

 Re M Eka h h    (9) 

Im[] = ka (E/hE + M/hM) /4 .  (10) 

Thus, the procedure of deriving the propagation 

constant at a particular frequency includes manual 
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finding of the two heights and two scale heights at a 

given profile and substituting these into equations (9) 

and (10).  

Such a procedure is universal: it might be used for 

an arbitrary profile. However, it is time consuming and 

inconvenient in use. This is why Greifinger and 

Greifinger (1978) suggested the following relation for 

finding the magnetic characteristic height:  

hM = hE  2E ln(2kE).  (11) 

This relation has a clear physical meaning. The 

electric field of a radio wave penetrates to the height 

hE. Further diffusion of the magnetic field into the 

plasma depends on the local “electric” scale height E.  

When one treats a profile having the constant scale 

height, equation (11) provides the upper characteristic 

height coincident with that found from equation (8). 

When the scale height varies with altitude, the 

magnetic height found from (11) becomes a 

convenient proxy of the real height satisfying condition 

(8).  

Greifinger and Greifinger (1978) derived the 

characteristic heights hE and hM and the scale heights 

E and M for the Cole and Pierce (1965) profile, and 

this allowed obtaining the realistic propagation 

constants matching the measurements of ELF radio 

signals transmitted by the Wisconsin Test Facility (WTF), 

the US navy transmitter.  

The exponential Greifinger and Greifinger (1978) 

model appeared to be rather convenient and efficient. 

A desire emerged to adopt it to the SR studies, and 

two obstacles should be overcome. The first one was 

the Cartesian geometry used in the original 

exponential model while the SR takes place only in a 

closed spherical volume. This obstacle was overcome 

by proving that relations remain valid in the spherical 

Earth–ionosphere cavity, provided that the signal 

frequency exceeds a few hertz (Nickolaenko and 

Rabinowicz, 1982, 1987).  

The second problem was associated with the wide 

band nature of natural radio signals in distinction from 

the man-made ELF transmissions. SR signals cover 

approximately a decade of 4–40 Hz. A prospect of 

returning to the (h) plot for every frequency was the 

second obstacle. This problem was solved by 

modifying the equations for the characteristic heights 

by introducing the reference height hR and the 

reference frequency fR. These quantities appeared in 

the papers evaluating feasible SR in the global cavities 

of other planets (Nickolaenko and Rabinowicz, 1982, 

1987). The lower characteristic height as a function of 

frequency was introduced as:  

hE(f) = hR + E ln(f/fR),  (12) 

and the upper characteristic height was found using 

equation (11). The following parameters were used for 

the Earth–ionosphere cavity: fR = 1 Hz, E = 3.4 km, and 

hR = 38.8 km in Nickolaenko and Rabinowicz (1982). 

The atmosphere of the Venus corresponded to the 

following set: fR = 1 Hz, E = 2.7 km, and hR = 65.9 km. 

The Earth–ionosphere cavity played the role of a 

reference model for validating the approach itself and 

evaluating the accuracy of the modeling. Later, a 

similar approach was suggested by Sentman (1990, 

1995) and Fullekrug (2000). Expediency of the ELF 

propagation constant found from a single-scale 

exponential profile model is based both on its simplicity 

and a possibility of putting forward the physically 

meaningful interpretation with rather realistic 

ionosphere models.  

2.2. Two-scale exponential model 

Further development of the single-scale 

exponential model was the introduction of the two-

scale exponential profile. In the simplest variant, the 

characteristic heights were calculated from equations 

(12) and (11), but in the vicinity of magnetic height the 

scale height E was substituted by the M value. Such a 

profile was regarded as a two-scale profile. More 

sophisticated variants of two-scale profiles were also 

used (e.g. Sentman, 1995) having a bent (h) 

dependence between 50 and 60 km altitude, which is 

often regarded as a “knee”. Here, the transition occurs 

from the ionic conductivity at low altitudes to 

prevalence of electrons at higher altitudes (Kirillov, 

1996, Kirillov et al., 1997, Kirillov and Kopeykin, 2002, 

Mushtak and Williams, 2002, Pechony and Price, 2004, 

Pechony 2007, Greifinger et al., 2007). These works 

described the procedure of obtaining the (f) 

dependence and the goal was the effective 

parameters of RLC transmission lines used in the two 

dimensional telegraph equations (2DTE) technique. 

Among these, the knee model introduced by Mushtak 

and Williams (2002) was suggested having the key 

distinction that two scale heights are used around the 

complex electric height while the complex magnetic 

height is introduced in a separate way, see the next 

sub-section. 

2.3. Knee model  

This knee model defines the following complex 

electric and magnetic heights hE and hM:  

hE(f) = hkn + a ln(f / fkn) + 
 

           + ln[1+(fkn / f)
2
](a–b) /2 + (13) 

           + i[a /2 – (a–b) tan
–1

(fkn/f)]  

and  

hM(f) = hm
*
 – m ln(f / fm

*
) – im(f)  /2. (14) 

Here hkn and fkn are the knee height and knee 

reference frequency correspondingly. Similarly to 

equation (7), these parameters introduce the 

coordinates of the “knee” (the altitude and the 

relevant conductivity). The detailed description of a 

knee profile might be found in Greifinger et al. (2007). 

Two scale heights are valid around the knee: a is the 

scale height above the knee and b is the scale height 

below the knee, usually a<b (see Table 1).  

Equation (14) separately defines the upper 

characteristic height. It implies the magnetic reference 

height hm
* and the magnetic reference frequency fm*. 

The frequency dependent magnetic scale height is 

introduced by the following equation:  
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Table 1. The empirical values of the parameters in the knee model (Mushtak and Williams, 2002)  

fkn, Hz hkn, km b, km a, km fm
*, Hz hm

*, km m
*, km bm, km Hz 

10 55 8.3 2.9 8 96.5 4.0 20 

 

M = m
*
+ bm(1/f – 1/fm

*
), (15) 

where m
* is the reference scale height, and bm is the 

coefficient controlling frequency variations of the 

upper scale height.  

The propagation constant (f) is obtained from the 

regular expression for the heuristic ELF models 

(Greifinger and Greifinger, 1978):  

(+1) = (ka)
2
 hM / hE, (16) 

or from the equation for the exp (+it) time 

dependence: 

(f) = [1/4 + (ka)
2
 hM / hE]

1/2
 - 1/2 (17) 

Parameters involved in formulas (13)–(17) are listed 

in Table 1. They were specified by Mushtak and 

Williams (2002) to match alteration of the observed Q–

factors with the mode number n of the SR.  

2.4. Accuracy of exponential models  

We emphasize that the above mentioned models 

are not based on the actual (h) profile. Instead, they 

operate with a set of parameters that allow computing 

the propagation constant as a function of frequency, 

and these parameters are regarded as characteristic 

heights and scale heights.  

Let the air conductivity (h) be the exponential 

function of height over the ground (h) = 0 exp(h/). 

One may use the above listed equations for 

computing the ELF propagation constant (f). 

Simultaneously, one can construct the rigorous solution 

of the problem using the FWS (see below) and also 

derive the propagation constant. Owing to the 

approximate nature of equations (11) and (12), the 

“exponential” solution will deviate from the rigorous 

one. Knott (1998), and Jones and Knott (1999, 2003) 

addressed these deviations: they evaluated the 

propagation constant, the SR frequencies and the 

quality factors. It was shown that the exponential 

model deviates from the rigorous solution. The real part 

of propagation constant (or the phase velocity of 

radio waves) deviates only by 0.15 – 1.2 %, while the 

imaginary part (the wave attenuation factor) might 

depart by more that 10 %.  

Similar deviations might be expected for the knee 

model. A set of profile parameters based on the knee 

model was introduced and applied by Pechony (2007) 

using the 2DTE technique. However, it was not 

emphasized that the RLC parameters of the 2D 

transmission line were obtained from the heuristic 

equations rather than the rigorous FWS. The solution 

thus obtained remains an approximate one, and the 

characteristic heights and scale heights may not 

correspond to an actual conductivity profile (h) 

(Galuk et al., 2015). So, the model conductivity profiles 

based on the knee and heuristic exponential models 

provide unrealistic SR data when used in FDTD 

technique. We will make relevant computations in this 

work to compare data of the knee model with the 

results of rigorous solutions. 

3. The conductivity profile based on knee 
model 

The conductivity profile of atmosphere is necessary 

when obtaining rigorous solutions using the FWS or the 

FDTD techniques, and this profile must exactly 

correspond to the heuristic knee model. Unfortunately, 

the works incorporating the knee model are only 

based on the verbal description of the (h) profile. 

None of these depicts the conductivity profile nearby 

the both characteristic heights and demonstrates 

correspondence of the propagation constant found 

from the profile and from heuristic relations. Obtaining 

such a profile is not a simple task, especially because 

all model parameters are functions of frequency and 

some of them are complex functions.  

We construct the (h) function by using the knee 

model (Mushtak and Williams, 2002). The profile in the 

horizontally uniform Earth–ionosphere cavity combines 

two exponential functions around the “knee” altitude:  
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Fig. 1. Conductivity profiles corresponding to the knee model. 

The reference frequency fkn = 10 Hz and the knee 

altitude hkn = 55 km were used by Mushtak and Williams 

(2002). We calculate the relevant knee conductivity 

kn = 20fkn = 5.56631010 S/m. The (h) profile (18) is 

continued from the knee point (kn, hkn) by two 

exponents having the scale height b below the knee 

altitude and a above it. This function is shown in Fig.1 

by black dots, and we regard it as “knee electric” or 

profile 1. Plots in Fig. 1 are shown in the standard way. 

The abscissa depicts the logarithm of conductivity, and 

the ordinate shows the altitude above the ground 

ranging from 0 to 100 km.  
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The higher part of the conductivity profile in the 

knee model must intersect with the magnetic altitude 

hM = 96.5 km through the magnetic characteristic 

conductivity M(hM) = 2.47371010 S/m according to 

equation (8). The profile linked to this upper point has 

the scale height of 4 km, and it intersects with the 

lower, “electric” part (profile 1) at about 83 km altitude. 

Thus, we obtain the (h) dependence corresponding 

to the knee model in the whole 0–100 km interval. It is 

shown by the red line in Fig. 1, and we regard it as 

profile 2. For the lg() shown on the abscissa, profile 1 is 

formed by two straight lines, and profile 2 is a 

composition of three intersecting straight lines. The 

profile 2 corresponding to the knee model contains the 

knee at 55 km altitude and an “anti-knee” at 83 km.  

We suggest that profile 2 describes the same 

propagation condition in the uniform Earth-ionosphere 

cavity for all the models: the heuristic, the FWS, and the 

FDTD. Therefore, we apply it in the FWS computations 

of propagation constant, which will be compared with 

the standard Ishaq and Jones (1977) model and with 

the data obtained using the heuristic equations 

(13)-(17).  

4. Full wave solution (FWS) 
In a rigorous treatment of ELF radio propagation in 

a horizontally stratified medium, one obtains a system 

of linear algebraic equations for the wave transition 

and reflection coefficients in the adjacent layers (Wait, 

1970, Galejs, 1972, Bliokh et al., 1977, 1980). The 

problem formulation in terms of the surface 

impedance is more convenient than the direct 

application of boundary conditions for the horizontal 

electric and magnetic fields at each boundary. By 

introducing the surface impedance at the interfaces, 

one obtains the first order differential equation (19). 

The solution of (19) is constructed numerically by 

iterations. Detailed description of particular procedures 

and the results obtained for a realistic conductivity 

profiles can be found in Hynninen and Galuk (1972), 

Bliokh et al. (1977), and Galuk and Ivanov (1978).  

One obtains the following first order nonlinear 

equation for the spherical surface impedance when 

treating the eigen-value problem in the Earth–

ionosphere cavity formed by the stratified plasma:  

     
 

2

2
0

d
r ik r r ik

dr ikr r


  


     

(19) 

Here, (r) is the spherical surface impedance at the 

interfaces of the adjacent layers of atmosphere; λ = ν 

(ν + 1) is the complex eigen-value; ν is the propagation 

constant; k is the wave number k=/c; c is the light 

velocity in vacuum; r is the radius-vector of the 

spherical polar coordinate system (r, , ), and it is 

defined on the semi-infinite interval 0  r < ∞; 

    01r i r     is the complex relative dielectric 

constant of air; the exp (+it) time dependence is 

assumed.  

The boundary conditions for the surface 

impedance must be formulated in addition to 

equation (19). The Earth is perfectly conducting at ELF, 

and the first boundary condition is: (a) = 0, where a is 

the Earth’s radius. The ionosphere can be regarded as 

a uniform highly conducting medium starting from 

r1 = a+100 km, and the second boundary condition 

takes the form: (r1)= [(r1)]
1/2, where |(r1)| >> 1. 

The eigen-value problem is finding the parameter λ 

from the nonlinear equation (a, λ) = 0. The solution is 

obtained by numerical integration of equation (19) 

from r1 to r = a. The function (a, λ) is analytic with 

respect to parameter λ, hence its roots can be found 

by iterations or by the Newton’s method. Let λl be the 

l-th order iteration to the sought eigen-value λ, then 

the (l + 1)-th iteration is: 

 

 l

l
ll

;a

;a










1  

(20) 

After obtaining the λl iteration, the integration of Eq. 

(19) along the height is repeated with the new eigen-

value thus providing the next λl+1 iteration. The process 

continues until the old and new eigen-values deviate 

by less than 107.  

The derivative ),r()r( 






1

 involved in formula 

(20) is obtained by integrating the supplementary 

differential equation. It was obtained by differentiating 

equation (19) by λ. This equation and the initial 

condition at r= r1 are:  

     
 

1 1 2

1
2 ( ) 0

d
r ik r r r

dr ikr r
   


    

(21) 

and  

δ1(r1)=0  (22) 

The upper height in the ionosphere r1 was chosen 

by exhaustive search: solutions were constructed for 

several r1 values, and the value of 100 km was chosen 

since the final result stopped changing within the 107 

accuracy with the increase above this height.  

When calculating the field components, one has to 

derive both the eigen-values and the so-called integral 

norm N0. These quantities do not require additional 

computations in our scheme, since:  

)();( aikaaikaN 1
220 




 .  (23) 

The integral norm (23) provides the lower 

characteristic height of the cavity.  

 
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r

a

r

C
.  (24) 

To stress its distinction from the heuristic hE found 

from (13), we use the notation hC since this is the height 

allowing obtaining the elementary capacitance in the 

2D RLC transmission line (Kirillov, 1996, Kirillov et al., 1997, 

Kirillov and Kopeykin, 2002). The upper (inductance) 

height hL is defined as:  

 

 aH

drrH
a

r

h a
L






 .  (25) 
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To compute this height, we use the relation 

ν(ν+1)=(k/a)2hL/hС. The inductance hL and the 

capacitance hС heights have much in common with 

the Greifinger’s characteristic heights, and these are 

completely similar to the magnetic and electric heights 

of the knee model. However, the Greifinger’s heights 

are real, while hL and hС are complex. In distinction 

from the characteristic heights of the knee model, the 

hL and hС heights are found from the rigorous FWS for a 

conductivity profile. The frequency dependence hM(f) 

and hE(f) was simply postulated in the knee model by 

equations (13) and (14).  

The propagation parameter, and the complex 

characteristic heights were obtained using the FWS 

procedure for the conductivity profile 2. The range of 

altitudes was 0–100 km and the step dh = 1 km was 

used in the computations. Fig. 2 depicts the frequency 

variations of complex heights in the knee model and 

derived by FWS.  

Two frames are shown in Fig. 2. The upper one 

depicts frequency variations of the real part of 

characteristic height, and the lower one shows the 

imaginary part of these heights. Curves with squares 

and dots correspond to hM and hE relevant to the knee 

model (Mushtak and Williams, 2002), respectively. The 

line with triangles and the smooth line correspond to 

the FWS-derived hL  and hC , respectively. Plots in Fig. 2 

indicate that the knee model closely represents the 

results of the rigorous FWS for the electric characteristic 

height. Deviations are more pronounced in the 

magnetic height, although these are not great except 

deviations of Im[hM] from Im[hL]. We observe that 

equations (13)–(14) closely correspond to the FWS for 

the knee profile.  

Figure 3 compares the propagation constants of all 

above-mentioned models. Upper plot in Fig. 3 presents 

the imaginary part of propagation constant (the wave 

attenuation rate). Here, we depict the etalon 

dependence derived by Ishaq and Jones (1977) by 

the black smooth line and compare it with the knee 

model (red curve with dots) and FWS data (blue line 

with stars). The wave attenuations are practically 

coincident in the frequency band of the first three SR 

modes, but the standard model predicts somewhat 

lower attenuation rate above the 20 Hz frequency.  

Lower plots in Fig. 3 present the real part of 

propagation constant (relevant to the wave 

propagation velocity) in the vicinity of the first, second, 

and third SR modes. One may observe that departures 

in the Re[(f)] plots become visible gradually at the 

higher modes. The peak frequency fn of the n-th SR 

mode satisfies the condition Re[(fn)] = n (Nickolaenko 

and Hayakawa, 2002, 2014). Therefore, intersections of 

particular plots with the levels Re[(fn)] = 1, 2, and 3 in 

the lower frames of Fig. 3 indicate the position of 

corresponding peak frequencies. All models give close 

values of the real part of the propagation constant, 

 

Fig. 2. Upper and lower characteristic heights against the 
frequency. 

 

Fig. 3. Dispersion curves in the standard model (smooth black 
curve), knee model (red curve with dots), and FWS for the 
knee profile (blue curve with stars). Upper frame shows 
frequency variations of the imaginary part of the propagation 
constant (wave attenuation) and three lower frames depict 

frequency the Re[ (f)] dependence in the vicinity of the first 
three SR modes.  
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Table 2. The theoretical modal frequencies and quality factors for the lower five SR modes with different models of propagation 

parameters 

Mode number 

Reference model 

(Ishaq and Jones,1977) 

Empirical knee model 

(Mushtak and Williams,2002) 
Conductivity profile 2 

fn(Hz) Qn fn Qn fn Qn 
1 7.71 4.09 7.74 4.01 7.67 4.06 

2 13.98 4.86 13.97 5.20 13.85 4.87 

3 20.24 5.43 20.11 6.02 20.00 5.38 

4 26.52 5.91 26.24 6.61 26.19 5.73 

5 32.81 6.32 32.39 7.07 32.42 5.98 

 

 

 

Fig. 4. The time waveform (a) and the spectra (b) of the vertical 
dipole used in the FDTD algorithm. 

therefore, the peak frequencies are almost coincident 

for all three models, although departures become 

visible at higher modes. Deviations in the imaginary 

part or in the attenuation rate of radio waves also 

become obvious at higher modes.  

We further calculate the theoretical modal 

frequencies 
nf  and quality factors 

nQ  for the lower five 

SR modes with the FWS-derived propagation 

parameter, and compare them with those calculated 

with the empirical knee model by Mushtak and 

Williams (2002) and the reference model by Ishaq and 

Jones (1977), as shown in Table 2. The following 

theoretical expressions for
nf and 

nQ  are used (Mushtak 

and Williams,2002): 

(0)

2

Re ( )

( )

n
n n

n

S f
f f

S f
  

(26) 

Re ( )

2 Im ( )

n
n

n

S f
Q

S f
   

(27) 

where  (0) 2 (n 1)nf c a n   is the resonance 

frequency in the ideal Earth-ionosphere cavity.  

From Table 2, the resonance frequencies of the 

three models are coincident, and the Q factors of our 

conductivity profile 2 are closer to those of the 

reference model compared with the empirical knee 

model by Mushtak and Williams (2002). Plots in Fig. 3 

indicate that profile 2 provides the propagation 

constant very close to the reference model within the 

entire SR band: deviations in the phase velocity do not 

exceed 1%, and those in the attenuation rate are 

within the 5% interval. Thus, profile 2 with the two bent 

regions (the knee and the anti-knee) is appropriate for 

modeling the global electromagnetic resonance in the 

Earth–ionosphere cavity. We speak here about its 

possible applications in the direct methods of field 

computations, such as FDTD, 2DTE and the transmission 

line matrix technique (Christopoulos, 1995; Morente et 

al.,2003,2004; Toledo-Redondo et al.,2013). 

5.The FDTD method 
The three-dimension (3D) spherical-coordinate FDTD 

technique with latitude-longitude grids is adopted here 

to obtain the direct solution for the conductivity 

profile 2. Its iterative equations are mainly derived from 

the differential form of the Maxwell equations, except 

the singularities at the poles, which are resolved using 

the integral form of the Maxwell’s equations (Holland, 

1983). The Earth–ionosphere cavity is assumed to be 

confined by two concentric spherical surfaces: the 

inner Earth’s surface with the radius of 6370 km and the 

outer lower ionosphere surface at an altitude of 100 km. 

Both the boundaries are perfect conductors. The grid 

sizes are r=5 km,  =  = 1 in r,  , and  directions, 

respectively. The time step is set as t = r/(2c), where 

c is the light velocity in the vacuum. The conductivity 

profile 2 with the 2.5 km (r/2) step is used because Er 

component is defined at the center of each grid in the 

vertical direction while E  and E  are defined at the 

extreme point of each grid. A vertical dipole is 

assumed to be the field source having the length of 

the cavity height positioned at the North pole.  

The source current in the FDTD algorithm was 

selected to have the zero DC component, and it is 

shown in Fig. 4 together with its amplitude spectrum. In 

the ZHSR expressions (1) and (2), the current moment of 

the source was MC(f) = const. To make the ZHSR and 

FDTD data compatible, the spectra obtained after 

Fourier transform of the FDTD time domain signal were 

divided by the source spectrum shown in Fig.4 (b).  
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Fig. 5. Amplitude spectra of the vertical electric field and horizontal magnetic field at the discrete source–observer distances.  

6. Comparison of the SR spectra 
The major goal of our modeling was obtaining the 

ELF fields. We must remind here that deviations in 

propagation conditions become more obvious when 

one turns to the SR spectra rather than to the 

propagation constant (Nickolaenko and Hayakawa, 

2002). Two schemes are used in this work: the ZHSR and 

FDTD technique. The spectra relating to the heuristic 

knee model by Mushtak and Williams (2002) are 

calculated with the ZHSR, and the spectra relating to 

the rigorous solutions (FWS and FDTD) for the 

conductivity profile 2 are calculated with both the 

methods.  

Figure 5 depicts the computed amplitude spectra 

of the vertical electric field Er and the horizontal 

magnetic field H at a few source–observer distances 

of 5, 10, 15, and 19.5 Mm. The frequency from 4 to 50 

Hz is plotted on the abscissa. The ordinates show the 

field amplitudes in arbitrary units being the same at all 

frames. The red lines with dots represent spectra 

calculated with the ZHSR algorithm using the knee 

model formulas (13)–(17). The blue lines with stars 

represent the ZHSR spectra calculated for the 

propagation parameters derived by FWS for the 

conductivity profile 2. The black smooth lines show 

spectra obtained by the FDTD procedure for the profile 

2. Thus, the propagation model in the FWS-ZHSR and 

FDTD solutions is exactly the same.  

For the first time the comparison is made of 

computational data obtained in direct FDTD 

technique and in the framework of classical FWS-ZHSR 

for the same atmospheric conductivity profile. One 

may observe that in spite of applying completely 

different computation techniques, the amplitude 

spectra are practically coincident for the FWS-ZHSR 

and FDTD solutions. Mutual deviations are negligible. It 

is worth noting here that we used the ionosphere 

height h = Re[hE] in the both equations (1) and (2), and 

we will discuss this detail below. The knee model by 

Mushtak and Williams (2002) provides the results slightly 

deviating from the FWS-ZHSR and FDTD data. These 

departures proportionally increase with the frequency. 

Similarly to Nickolaenko and Hayakawa (2002), we 

observe that spectral patterns are more sensitive to 

deviations between the models than the relevant 

dispersion curves.  

All spectra in Fig. 5 are similar. To note deviations, 

one has to plot all of them together. Visible departures 

of the solution based on the heuristic knee model from 

the rigorous FWS-ZHSR and FDTD spectra arise from the 

approximate nature of the knee model and its 

approximate interpretation of the equivalent 

conductivity profile. Similar deviations were reported 

by Knott (1998) and Jones and Knott (1999, 2003) 

relevant to the exponential Greifinger and Greifinger 

(1978) model.  

In many applications these discrepancies are 

insignificant. However, there is an important area 

where accuracy of the field amplitude is crucial. We 

speak of deducing the spatial distribution of global 

thunderstorms from the simultaneous SR records 
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performed at the globally separated observatories. The 

method of tomographic reconstruction is used to 

accomplish this task (Shvets et al., 2010; Shvets and 

Hayakawa, 2011). The procedure is exceptionally 

sensitive to amplitudes of the basic functions (the 

spectral patterns for the different source distances). In 

particular, when one applies the basic functions 

corresponding to the heuristic knee model, the 

reconstruction will substantially underestimate the 

remote thunderstorm activity. Therefore, the recovered 

distribution of lightning strokes will become distorted. 

This is why the rigorous FWS-ZHSR and FDTD solutions 

should be preferred in the tomographic 

reconstructions.  

7. Discussion 
Visual departure of profile 2 from profile 1 in Fig. 1 

allows us to predict the character of deviations of the 

relevant propagation constants. As we observe, 

profiles depart at altitudes above 83 km, and the air 

conductivity should be increased when one transfers 

from profile 1 to profile 2. The FDTD numerical 

experiments with the disturbed profiles (Yang and 

Pasko, 2005, Yang et al., 2006, Zhou and Qiao, 2015) 

indicate that such a “high altitude” modification 

increases the observed peak frequency of SR. 

Therefore, we argue that the FDTD models applying 

the profiles of type 1, which are widely used in the 

literature, will overestimate the resonance frequencies.  

We have checked the consistency of the SR 

spectra obtained for the same conductivity profile 

when using the heuristic knee model, the FWS, and the 

FDTD technique. We found a close correspondence of 

the amplitude spectra derived by the rigorous FDTD 

and FWS-ZHSR techniques for the first time. The heuristic 

knee model also provides data close to the rigorous 

methods when one is interested in the ELF propagation 

constant within the SR band. Deviations in the 

amplitude spectra are much more pronounced.  

The other important finding is the value of the 

effective ionosphere height exploited in the ZHSR. The 

ionosphere height is a real constant in the ideal cavity, 

and it was also assumed to be a constant in many 

studies of the cavity with the vertically non-uniform 

ionosphere. Sometimes, the effective height is 

associated with the lower and/or the upper 

characteristic heights when computing spectra of 

electric or magnetic fields. We found that the 

coincident SR spectra in the FDTD and FWS-ZHSR 

techniques are obtained when the ionosphere height 

is h = Re[hE] regardless the field component. (This 

statement is also valid when h = |hE| since the 

imaginary part of characteristic height is much smaller 

than its real part). We compare below the FWS-ZHSR 

results with those of FDTD for different ionosphere 

heights found for conductivity profile 2. The source-

observer distance is 10 Mm. This is the nodal distance 

for the odd resonance modes in the electric field and 

for the even modes of magnetic field. Fig. 6 compares 

the vertical electric field spectra for h = 60 km, Re[hM], 

and Re[hE] heights used in the ZHSR formula (1). Fig. 7 

depicts the horizontal magnetic field with h = 60 km, 

Re[hM], and Re[hE] heights in the ZHSR formula (2). 

Obviously, the effective cavity height h = Re[hE] fits the 

FDTD data in the best way regardless the particular 

field component. Deviations between the FDTD and 

ZHSR results for Re[hE] might arise from the different 

height steps used in the FWS (dh = 1 km) and the FDTD 

(dh = 5 km) numerical solutions. This point deserves a 

separate treatment.  

 

 

Fig.6. Comparison of the vertical electric field spectra obtained 
with ZHSR and FDTD (blue line with triangles) under the same 
propagation condition. Three cases are shown: h=60 km 
(black smooth line), Re[hM] (green line with dots), and Re[hE] 
(red line with stars) relevant to the ZHSR formula.  

 

Fig. 7. Comparison of the horizontal magnetic field spectra 
obtained with ZHSR and FDTD (blue line with triangles) under 
the same propagation condition. Three cases are shown: h=60 
km (black smooth line), Re[hM] (green line with dots), and 
Re[hE] (red line with stars) relevant to the ZHSR formula. 

8. Conclusion 
We constructed the conductivity profile based on 

verbal description of the knee model by Mushtak and 

Williams (2002), and computed the corresponding 

propagation constant by using the rigorous FWS. 

Comparison of propagation constant obtained by the 

FWS, from the Mushtak and Williams (2002) knee model, 

and from the standard Ishaq and Jones (1977) 

reference model showed their close correspondence.  

The profile was used in two rigorous solutions of the 

problem: the FWS-ZHSR and the FDTD. For the first time 
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the comparison is made of computational data 

obtained in direct FDTD technique and in the 

framework of classical FWS-ZHSR for the same 

atmospheric conductivity profile. Exceptional similarity 

is demonstrated of the relevant amplitude spectra of 

the vertical electric and horizontal magnetic field 

components obtained by these two completely 

different approaches. 

The SR spectra were also computed based on the 

heuristic knee model by Mushtak and Williams (2002) 

by using the ZHSR expressions. Comparison of spectra 

showed deviations of this solution from the rigorous 

results. Spectral departures gradually increase with 

frequency. This suggests that the heuristic knee model 

does not exactly correspond to its verbal interpretation.  

It is found in addition that the ionosphere effective 

height involved in the ZHSR formula should be equal to 

the real part of electric characteristic height or to its 

modulus in spite of what a particular field component 

is computed, vertical electric or horizontal magnetic. 

This peculiarity indicates a necessity of special 

investigation in the future.  
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