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Abstract: Solar azimuth may become indefinite at sunrise and sunset. This discrepancy is 

corrected in the present work. The correction concerns application of Fourier–series analysis to the 
solar paths over a site during days when the problem arises. The result is the derivation of a new 
curve that is fitted with great accuracy to the daily solar azimuth values, thus bridging the gap of 
the discontinuity. A demonstration for the solar azimuth correction is given for 3 sites around the 
world (Athens, Stockholm, and Sydney). The correction can be applied to any solar geometry code; 
in this work the algorithm of the XRONOS code is selected without (XRONOS.bas, a BASIC 
programme) and with (XRONOS.m, a MATLAB code) the correction proposed. A corrected expression 
for the atmospheric refractive index at various altitudes is given in Appendix A as the refraction of 
solar right is treated in XRONOS.  
© 2020 BBSCS RN SWS. All rights reserved  
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1. Introduction 
An exact estimation of the position of the sun 
in the sky at any location on earth is a prime 
task for any solar radiation scientist or solar 
energy engineer. This occurs because solar 
radiation is required to be estimated via 
modelling most of the time due to the scarcity 
of solar radiation measuring stations 
worldwide (Katiyar & Pandey, 2013). The 
exact position of the sun in the sky is a key 
parameter for an accurate estimation of its 
instantaneous intensity, which, in turn, may 
result in an accurate assessment of the solar 
potential at the location after integrating the 
instantaneous values over time (e.g., hours, 
months or years). 
To calculate the solar position in the sky, 
various algorithms have been developed. 
These algorithms are either in the form of an 
on-line tool (e.g., the Sun Path Chart available 
at 
http://solardat.uoregon.edu/SunChartProgra
m.php, the Sun Position Calculator available 
at https://www.volker-
quaschning.de/datserv/sunpos/index_e.php, 
or the Logiciel CalSol in the French language 
available at http://ines.solaire.free.fr) or in 
the form of a code; such codes are the SUNAE 
algorithm (Walraven, 1978) and its 
modifications (Walraven, 1979; Archer, 1980; 
Muir, 1983; Wilkinson, 1983), which  resulted 
in the renamed XRONOS code (Kambezidis and 
Papanikolaou, 1990; Kambezidis and 
Tsangrassoulis, 1993); also, the SPA code 
(Reda and Andreas, 2004), the PSA code 
(Blanco-Muriel et al., 2001), the ENEA code 

(Grena, 2008), the Michalsky algorithm 
(Michalsky, 1988), and the 1971 Spencer 
calculations. Recently, Zhang et al., (2021) 
proposed a new mathematical formula, which 
introduces the notion of the sub-polar point 
and calculates the solar vector. 
The accuracy of the various tools and 
algorithms varies. The present work focuses 
on those codes that are applications running 
on a PC. The Spencer formula has a maximal 
error greater than 0.25o, later reduced to 
0.02o. The SUNAE had an error of 0.013o 
reduced to 0.001o in XRONOS; the Michalsky 
algorithm has the disadvantage of time 
limitation in the accuracy of calculations 
(1950-2050), while the PSA code works 
correctly for the period 1995-2015. The SPA 
code has a maximum error of 0.008o, while 
the ENEA one of less than 0.0003o, but its cost 
is complexity as it requires a large number of 
intrinsic calculations. Therefore, it seems that 
the XRONOS code, though a simple-to-use 
algorithm, provides sufficient accuracy to 
solar radiation modellers, and moreover to 
solar energy engineers. The XRONOS code is 
an embodied routine in the Meteorological 
Radiation Model (MRM, e.g., Kambezidis et 
al., 2000, 2017; Kavadias et al., 2014), as the 
MRM, as any solar radiation model, pre-
requires the calculation of solar geometry 
before the estimation of the value of solar 
radiation. Nevertheless, recently a 
discontinuity error was detected in XRONOS 
regarding the calculation of solar azimuth at 
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the moments of sunrise and sunset. This 
discontinuity is related to the analytical 
expressions that calculate the solar azimuth. 
The aim of the present study is, therefore, to 
provide corrected expressions for this 
parameter. 

 

2. Description of the Discontinuity 

The initial SUNAE algorithm was implemented 
as a FORTRAN programme (i.e., SUNAE.for). 
The modified SUNAE, which has been renamed 
to XRONOS (XRONOS means time in Greek, X is 
pronounced CH), was first implemented as a 
routine written in the BASIC programming 
language (i.e., XRONOS.bas). The recent 
correction to the solar azimuth was made in 
the MATLAB environment and, therefore, 
XRONOS is a MATLAB routine now (i.e., 
XRONOS.m). 
The expressions for estimating the solar 
altitude, γ, and solar azimuth, ψ, at any 
moment over any location on earth are the 
following (Kambezidis, 2012): 

sin 𝛾 =  sin 𝜑 ∙ sin 𝛿 + cos 𝜑 ∙ cos 𝛿 ∙ cos 𝜔, (1) 

sin 𝜓 =
sin 𝛾 ∙ sin 𝜑 − sin 𝛿

sin 𝛾 ∙ cos 𝜑
, (2) 

where φ is the geographical latitude of the 
location given by the user, δ is the solar 
declination, and ω is the hour angle, all in 
degrees; γ varies in the range [-90o, +90o] with 
positive after sunrise and negative values 
after sunset (i.e., above and below the local 
horizon, respectively); ψ lies in the interval [-
180o, +180o] with positive after and negative 
values before solar noon (i.e., ψ = 0o when the 
sun is over the local south of the observer); φ 
varies in the range [-90o, +90o] with positive in 
the northern and negative values in the 
southern hemisphere; δ is in the range [-23.5o, 
+23.5o] throughout the year, and ω varies in 
the interval [-90o, +90o] with positive after 
and negative values before solar noon (i.e., ω 
= 0o when the sun is over the local south of 
the observer). The analytical relationships for 
the calculation of δ and ω are (Walraven, 
1978): 

sin 𝛿 = sin 휀 ∙ sin 𝐿𝑂𝑁𝐺, (3) 

𝜔 = 𝑟𝑎 − 𝑠, (4) 

휀 = 23.442 − 3.56𝑥10−7 ∙ 𝑡𝑖𝑚𝑒, (5) 

𝑡𝑖𝑚𝑒 = (𝑌𝐸𝐴𝑅 − 1980) ∙ 365 + 𝑖𝑛𝑡 (
𝑌𝐸𝐴𝑅 − 1980

4
) + 𝐷𝑂𝑌 − 1 +  

𝑡

24
 , (6) 

𝑡 = 𝐻𝑂𝑈𝑅 +  
𝑀𝐼𝑁

60
+ 𝛧𝛰𝛮𝛦, (7) 

𝑠 = 𝑠𝑡 + 15 ∙ 𝑡 −  𝐿𝑂𝑁𝐺, (8) 

𝑠𝑡 = 1.759335 + 2𝜋 ∙ (
𝑡𝑖𝑚𝑒

365.25
) − (𝑌𝐸𝐴𝑅 − 1980), (9) 

where ε is the angle between the ecliptic 
plane and the plane of the celestial equator 
(in degrees), and LONG, ZONE are the 
geographical longitude and time zone of the 
location, respectively, (in degrees, positive 
west and negative east of the Greenwich 
meridian) given by the user; the function 
int(…) delivers the integer value of the 
argument; DOY is the day of the year (1 for 1 
January, 365, or 366, for 31 December in a 
non-leap, or leap, year), while the variables 
YEAR, HOUR, MIN are the year, hour, and 
minute for which the calculations are to be 
made and are provided by the user. 
In the above equations, the atmospheric 
refraction has been neglected. Since this 
factor is important in the calculations of solar 
altitude (or solar elevation) and solar azimuth, 
this effect must be considered in Equation (1). 
Therefore, for more accurate estimation of 
the γ and ψ values the following expressions 
replace Equations (1) and (2) (Kambezidis & 
Papanikolaou, 1990): 

𝛾 = 𝑒𝑡𝑠 + 𝑟𝑒𝑓, (10) 

tan 𝜓 =
𝜃

√|1 − 𝜃2|
 , (11) 

tan 𝑒𝑡𝑠 =
1

√(1− 𝑞2)
, q = sin 𝛾, (12) 

𝑟𝑒𝑓 = 3.5163977 ∙
0.1594 + 0.0196 ∙ 𝑒𝑡𝑠 + 0.00002 ∙ 𝑒𝑡𝑠2

1 + 0.505 ∙ 𝑒𝑡𝑠 + 0.0845 ∙ 𝑒𝑡𝑠2
 , (13) 

𝜃 =
cos 𝛿 ∙ sin 𝜔

cos 𝛾
. (14) 

The above expressions give accurate values for 
γ and ψ. Nevertheless, the estimation of ψ at 
the moments of sunrise or sunset may deliver 
a discontinuity. Indeed, Equation (14) 
becomes indefinite (θ = ∞) when cosγ = 
cos(±90o) = 0. Therefore, Equation (11) 
presents a discontinuity in ψ because of θ = ∞. 
To demonstrate the mentioned problem, use 
of the XRONOS code was made. Figure 1 
deploys the solar path on 3 days of 2021 for 
Athens (i.e., the solar equinox of 21 March, 
the summer solstice of 21 June, and the 
winter solstice of 21 December). The 
discontinuities occur for values of ψ around -
90o and +90o. For the winter solstice the 
discontinuities occur well before sunrise and 
well after sunset (i.e., below the local 
horizon); therefore, they do not affect any 
solar radiation estimations. On the contrary, 
the ψ discontinuities on the spring equinox 
(and moreover the autumn one, not shown 
here) are happening just about sunrise and 
sunset (i.e., the local horizon) and may create 
some problems in solar radiation calculations. 
As regards the summer solstice, the 
discontinuities occur well above the local 
horizon (i.e., well after sunrise or well before 
sunset) and create miscalculations. Figure 1 
gives a schematic diagram in which the daily 
paths over Athens are depicted for the 3 
selected days. 
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Figure 1. Daily paths of the sun in the sky of 
Athens on 21 June (summer solstice), during 
the equinoxes (21 March or 21 September), 
and on 21 December (winter solstice). N = 
north, S = south, E = east, W = west. The solar 
azimuth arc, ψ, measured from S on the local 
horizon, is less than, equal to, and greater 
than 90o at sunrise on the winter solstice, the 
two equinoxes, and the summer solstice, 
respectively. The indicated values of ψ are 
absolute ones because the minus sign (sign by 
convention to the east of the NS line) has 
been removed for easiness. The highest 
positions of the sun on the 3 paths refer to the 
12:00 solar time (they lie in the meridian 
plane). 
 

3. Correction of the Discontinuity 

To overcome the discontinuity problem in 
solar azimuth calculations during the 
implementation of the XRONOS algorithm in 
particular, the Fourier-analysis methodology 
was applied to the problematic data time 
series. 
The major advantage in applying a Fourier 
analysis to a data time series is that it can be 
used when a regression function cannot be 
established for the time series in question. In 
such cases, the unknown form of the data 
time series can be analysed and given in the 
form of sines and cosines. What is unknown 
since the beginning of the process is the 
optimum number of terms in the Fourier 
analysis that will effectively simulate the data 
time series. For the purpose of the present 
work, the lsqnonlin MATLAB routine was used. 
This function solves non-linear least-squares 
curve-fitting problems by minimising the 
square of the 2nd norm of the given function 
(i.e., the Fourier series). In the present study, 
a 6th-order Fourier-series function was 
eventually selected and used in 
XRONOS.m.  Figure 2a is an example of the 
solar azimuth discontinuities for the site of 
Athens observed at 16:30 LST during 2021. 
Figure 2b shows the result of applying the 
lsqnonlin routine to the solar azimuth data 
series and filling the discontinuity gaps. 
 

 

 
Figure 2. Solar azimuth values for Athens (φ = 
37.96o N, λ = 23.71o E) at 16:30 LST within 
the year 2021; (a) discontinuities from 
XRONOS.bas, and (b) recovery of 
discontinuities from XRONOS.m (red line). N = 
northern hemisphere, E = east of the 
Greenwich meridian, φ = geographical latitude 
(LAT in XRONOS.m), λ = geographical 
longitude (LONG in XRONOS.m). 

 
For a complete picture of the solar azimuth 
discontinuities, Figure 3 shows them in the 
form of annual solar analemmas for 3 selected 
sites in the northern and southern 
hemisphere. These analemmas were derived 
by using the XRONOS.bas algorithm providing 
the hourly values of γ and ψ for the whole 
2021. On the contrary, Figure 4 shows smooth 
yearly solar analemmas for 2021 after 
implementing the lsqnonlin routine in the 
XRONOS.m algorithm for the above 3 cities. 
 

 
(a) 
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(b) 

 
(c) 

Figure 3. Solar analemmas for the year 2021 
over (a) Athens (φ = 37.96o N, λ = 23.71o E), 
(b) Stockholm (φ = 59.32o N, λ = 18.07o E), 
and (c) Sydney (φ = 33.86o S, λ = 151.19o E) 
by using XRONOS.bas. The red circles show the 
solar azimuth discontinuities at ψ = ±90o. N = 
northern hemisphere, S = southern 
hemisphere, E = east of the Greenwich 
meridian, φ = geographical latitude (LAT in 
XRONOS.m), λ = geographical longitude (LONG 
in XRONOS.m). 

 
4. Conclusions 

The present work identified the problem of 
discontinuities in estimating solar azimuth. 
The discontinuity occurs on any day of the 
year at instances after sunrise or before 
sunset when ψ is equal to ±90o. The problem 
was explained by  

 
(a) 

 
(b) 

 
(c) 

Figure 4. Solar analemmas for the year 2021 
over (a) Athens (φ = 37.96o N, λ = 23.71o E), 
(b) Stockholm (φ = 59.32o N, λ = 18.07o E), 
and (c) Sydney (φ = 33.86o S, λ = 151.19o E) 
by using XRONOS.m. No analemma 
discontinuities are now observed at ψ = ±90o. 
N = northern hemisphere, S = southern 
hemisphere, E = east of the Greenwich 
meridian, φ = geographical latitude (LAT in 
XRONOS.m), λ = geographical longitude (LONG 
in XRONOS.m). 
 
analytical expressions and diagrams. The 
solution to the discontinuities was provided by 
applying a Fourier-series analysis to the whole 
daily path of the sun on the day under 
question and by deriving a smooth curve 
without discontinuities. 
The issue was demonstrated for 3 sites in the 
northern and southern hemisphere (i.e., 
Athens, Stockholm, and Sydney); for these 
cities, solar analemmas for 2021 were 
produced with and without discontinuities in 
ψ by using the XRONOS.bas and XRONOS.m 
algorithms, respectively. 

Further, the corrected expressions for the 

atmospheric refraction, ref, used in the 

XRONOS.m algorithm are provided in Appendix 

A. 
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Appendix A 
This section provides a discussion 
about Equation (13), which calculates 
the atmospheric refraction effect on 
solar altitude. Unfortunately, this 
expression assumes that the solar 
geometry calculations are made for 
sites at sea level or even low-level 
altitudes. For sites at high altitudes 
(above ≈200 m asl, asl = above sea 
level), the calculations may be 
erroneous because lower and lower air 
density with altitude results in more 
and more bending of the solar rays. 
This effect has not been accounted for 
in Equation (13). Therefore, this 
section refers to this correction, which 
is implemented in the XRONOS.m 
algorithm. 
According to Karttunen et al. (2016) 
the expression for the atmospheric 

refraction, ref, at various altitudes, z 
(in m asl), is given by the equations: 

𝑟𝑒𝑓 =  
𝑃𝑧∙0.00452∙tan(90−𝛾)

273+𝑇𝑧
 , for γ > 15

o
 (A1a) 

           𝑟𝑒𝑓 =
𝑃𝑧∙(01594+0.0196∙𝛾+0.00002∙𝛾2)

(273.15+𝑇𝑧)∙(1+0.505∙𝛾+0.0845∙𝛾2)
 , for γ ≤ 15

o
 (A1b) 

where Pz is the barometric pressure (in 
hPa), and Tz the air temperature (in 

o
C) 

at altitude z. An alternative expression 
to Equations (A1a) and (A1b) is by 
replacing the coefficient 3.5163977 in 
Equation (13) with the ratio Pz/Tz; the 
new expression for ref is, therefore, the 
following and this is used in 
XRONOS.m: 

         𝑟𝑒𝑓 =
𝑃𝑧

𝑇𝑧
∙

0.1594+0.0196∙𝑒𝑡𝑠+0.00002∙𝑒𝑡𝑠2

1+0.505∙𝑒𝑡𝑠+0.0845∙𝑒𝑡𝑠2  . (A2) 

It should be noted here that the 
coefficient 3.5163977 in Equation (13) 
is just the ratio P0/T0 = 1013.25/288.15 
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≈ 3.5163977 hPa∙K-1
, which calculates 

ref at sea level. 
Equation (A2) requires the knowledge 
of Pz and Tz. If these values cannot not 
be found or retrieved, then use of the 
following approximate formulas can be 
made (Gipe, 2016). 

𝑃𝑧 =  𝑃0∙(
𝑇0 − 𝑇𝑧

𝑇0

)
𝑔
𝑅  , (A3a) 

𝑅 =
6.5 ∙ 𝑧

1000
 , (A3b) 

where P0 is the baromatric pressure at 
sea level (taken as 1013.25 hPa or 
sometimes 1000 hPa), g is the 
acceleration due to gravity (equal to 
≈9.81 m∙s-2

), T0 is the air temperature 
at sea level (equal to 288.15 K), Tz is 
the air temperature at altitude z, and R 

is a scaling factor that takes into 
account the adiabatic lapse rate of 6.5 
o
C per 1000 m altitude. 

If the estimation of Pz and Tz would be 
to be avoided, then use of the 
following approximate calculations can 
be made (Lunde, 1980; Berberan-
Santos et al., 1997; Karttunen et al., 
2016). These expressions were used in 
XRONOS.m for deriving the results in 
Figs. 4a,b,c, because of unknown 
values of Pz and Tz at the 3 sites. 

𝑃𝑧 =  𝑃0∙𝑒
−

𝑧
8435.2 , (A4a) 

𝑇𝑧 =
6.5∙𝑧

1000
+ 𝑇0 . (A4b) 

 

 

 


