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Figure: Distribution of irregularities from year 1999-2004 over Africa (Groves et al., 2012).
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Ionosphere in the nutshell

Ionospheric regions
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Ionosphere in the nutshell

Formation and dynamics of the EIA
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Data and methods of analysis

Data
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Data and methods of analysis

GPS signal and atmospheric effects
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Data and methods of analysis

Ionospheric delay

When passing through the atmosphere, the electromagnetic signals experience changes in velocity (speed
and direction) due to the refraction.

According to Fermat’s principle, the measured range l is given by the integral of the refractive index n along
the ray path from the satellite to receiver:

l =

∫
rp

ndl. (1)

Accordingly, the signal’s delay can be written as

∆ =

∫
rp

ndl −
∫
sl

dl, (2)

where the second integral is the Euclidean distance between the satellite and receiver.

Eq. (2) includes both the signal bending and propagation delay.

One of the possible simplification can be obtained by approximating the first integral along the straight line
between the satellite and receiver:

∆ =

∫
sl

(n − 1)dl. (3)
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Data and methods of analysis

Dual frequency GPS signal in extracting ionospheric TEC

A medium where the wave propagation speed and hence the refractive index depend on the frequency or
the angular frequency ω and the wave number k are not proportional is a dispersive medium.
This is also valid for the ionosphere where ω and k are related, to a first approximation

ω
2 = c2k2 + ω

2
p , (4)

where c is the propagation speed of a signal in a vacuum and ωp = 2πfp , where fp = 8.98
√
Ne in Hz and

Ne is the electron density (in e
m3 ). Eq. (4) is called the relation of dispersion of the ionosphere, and ωp is

called the critical frequency of the ionospheric plasma.
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Data and methods of analysis

Cont· · ·

If we neglect terms other than ρ, ∆ph,i and ∆gr,i we may have

P1 = ρ + ∆gr,1 (5)

P2 = ρ + ∆gr,2 (6)

L1 = ρ + ∆ph,1 (7)

L2 = ρ + ∆ph,2. (8)

The dual frequency differencing of the code and phase ranges gives the ionospheric combinations PI and LI :

PI = P2 − P1 = ρ + ∆gr,2 − (ρ + ∆gr,1) = ρ +
f 2
1
f 2
2

∆gr,1 − ρ− ∆gr,1 (9)

LI = L1 − L2 = ρ + ∆ph,1 − (ρ + ∆ph,2) = ρ + ∆ph,1 − ρ−
f 2
1
f 2
2

∆ph,1. (10)

Thus we have

PI = P2 − P1 =
f 2
1
f 2
2

∆gr,1 − ∆gr,1 = ∆gr,1

(
f 2
1
f 2
2
− 1

)
(11)

LI = L1 − L2 = ∆ph,1 −
f 2
1
f 2
2

∆ph,1 = ∆ph,1

(
1−

f 2
1
f 2
2

)
. (12)
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Data and methods of analysis
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By using the relations ∆ph,1 = − 40.3
f 2
1

sTECP and ∆gr,1 = 40.3
f 2
1

sTECL we get

P2 − P1 =
40.3

f 2
1

sTEC

(
f 2
1
f 2
2
− 1

)
= 40.3

(
f 2
1 − f 2

2
f 2
1 f 2

2

)
sTECP (13)

L1 − L2 = −
40.3

f 2
1

sTEC

(
1−

f 2
1
f 2
2

)
= −40.3

(
f 2
2 − f 2

1
f 2
1 f 2

2

)
sTECL. (14)

From Eqs. (13) and (14) we get

sTECP =
1

40.3

(
f 2
1 f 2

2
f 2
1 − f 2

2

)
(P2 − P1) (15)

sTECL =
1

40.3

(
f 2
1 f 2

2
f 2
1 − f 2

2

)
(L1 − L2), (16)

where sTECP is the slant total election content from code measurements and sTECL is the slant total
election content from phase measurements.
If we consider the differencing of the code and the phase ranges including the biases and other terms we get

PI = P2 − P1 = 40.3

(
1

f 2
2
−

1

f 2
1

)
sTECP + Br + Bs (17)

LI = L1 − L2 = 40.3

(
1

f 2
2
−

1

f 2
1

)
sTECL + (N1λ1 − N2λ2) + B′r + B′s (18)
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Data and methods of analysis

Cont· · ·

The code range ionospheric combination PI is absolute, but noisy.

On the other hand, the phase combination, LI , is smooth and can provide very accurate measurements of
TEC changes, but is offset from the code range combination by a bias related to the unknown integer cycle
ambiguity, N1λ1 − N2λ2.

The ambiguity (phase leveling) is removed by averaging (sTECP − sTECL) over a satellite pass (phase
connecting arc) as

sTECleveled = sTECL − mean(sTECL − sTECP ) . (19)

This "levels" the TEC to the unambiguous.
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Data and methods of analysis

Methods of analysis
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Data and methods of analysis

Formulating statistical linear inverse problem

The sTEC and the ionospheric electron density (Ne) can be related by

sTEC =

∫
l
Ne(φ, λ, h, t)ds, (20)

where φ, λ, h and t stand for latitude, longitude, altitude and time variables respectively and l refers the
ray propagation path of each GPS satellite-receiver pair.

For 2D case, the sTEC can be formulated as

sTEC =

∫
l
Ne(φ, h)ds. (21)

The discretized version of Eq. (21) becomes

sTECi =
n∑

j=1
AijNej + εi, (22)

where i is the ith measurement along propagation path of each GPS satellite-receiver pair.
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Data and methods of analysis

Cont· · ·

Eq. (22) can be generally written in simple matrix notation as:

ym×1 = Am×nxn×1 + εm×1, (23)

where n is the number of pixels in the image, m is the number of sTEC measurements, y is a column vector
of the m known sTEC measurements, A is an m × n projection matrix with Aij being the length of ray i
traversing pixel j, x is a column vector consisting of all the unknown electron densities (Ne) in all the pixels,
and ε is a column vector associated with additive measurement noises.

Let the electron density vector, x and the measurement error vector, ε be independent, jointly distributed
random variables with x ∼ Normal(µn,Σr ) and ε ∼ Normal(0m,Σε) where µn , Σr , 0m and Σε are mean
of the unknown, covariance of the unknown, mean and covariance of the measurement error respectively.

If A be an m × n matrix, we can define a new random vector

y = Ax + ε. (24)
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Data and methods of analysis

Cont· · ·

Solving statistical linear inverse problem in Bayesian framework
If the measurement errors are Gaussian with zero mean, the a posteriori probability density of the unknown,
x, according to Bayesian framework, given its priori density, πpr(x), and measurement vector, y, can be
spelled out as

πpost(x) = π(x|y) =
πpr(x)× π(y|x)

π(y)
, (25)

where πpr(x) is the joint a priori density of the unknowns and the marginal density
π(y) =

∫
Rm π(x, y)dx =

∫
Rm π(y|x)πpr(x)dx is can be seen as a norming constant and usually of little

importance.

The expression π(y|x) ∝ exp
[
− 1

2 (y− Ax)TΣ−1
ε (y− Ax)

]
is called the likelihood function, as it expresses

the likelihood of different measurement outcomes when x = x is given.

Maximum Likelihood Estimate (MLE)
If we don’t consider a prior information, πpr(x) can be constant and thus the most probable values of the

unknown can be computed by maximizing π(x|y) = π(y|x) ∝ exp
[
− 1

2 (y− Ax)TΣ−1
ε (y− Ax)

]
with respect

to the unknown x. That means differentiating the above expression with respect to x and letting to be zero.

−
( d

dx
(Ax)

)T
Σ−1
ε (y− Ax)− (y− Ax)T Σ−1

ε

d

dx
(Ax) = 0. (26)

Since Σε is symmetric (Σε = ΣT
ε ) and nonsingular then Σ−1

ε is also symmetric (Σ−1
ε =(Σ−1

ε )T )).
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Data and methods of analysis
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This implies that the matrix multiplication, AT Σ−1
ε B = BT Σ−1

ε A, is valid.

Applying the above matrix multiplication identity into Eq. (26) gives

−
( d

dx
(Ax)

)T
Σ−1
ε (y− Ax)−

( d

dx
(Ax)

)T
Σ−1
ε (y− Ax) = 0. (27)

This in turn yields

− 2
( d

dx
(Ax)

)T
Σ−1
ε (y− Ax) = 0. (28)

Differentiation and further mathematical manipulations simplify the above equation into

AT Σ−1
ε (y− Ax) = 0

AT Σ−1
ε y = AT Σ−1

ε Ax. (29)

The resulting solution, which is known as the Maximum Likelihood Estimate (MLE), is given by

xMLE = (ATΣ−1
ε A)−1ATΣ−1

ε y. (30)
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Data and methods of analysis

Maximum A Posteriori (MAP) Estimate

An obvious limitation occurs on the maximum likelihood estimate of Eq. (30) when the inverse matrix
(ATΣ−1

ε A)−1 do not exist.

However, even when the inverse matrix exists, it can still be ill-conditioned (become nearly singular).
In this case our solution would be extremely unstable and unrealistic.
The instability of Eq. (30) exhibit too strong point-to-point variations in the inversion.
To overcome this problem, we need to find a way of limiting these variations (we have to apply
regularization methods).
To do so, let us consider two neighboring grid points (pixels) pi and pj located at the same altitude or at
the same latitude. If we assume that the difference of electron densities at these points is close to zero, we
incorporate some error εijr .

This can be formulated as

0 = xi − xj + ε
ij
r . (31)

If we do this for all vertical and horizontal differences of neighboring grid points, the resulting system of
equations can be expressed in a single matrix form as

0 = Arx + εr, (32)

where Ar is regularization matrix with elements +1,−1 and 0 in appropriate places. We can now combine
Eq. (24) and (32) to get a single matrix equation as

(
y
0

)
=

(
A
Ar

)
x +

(
ε
εr

)
. (33)
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Data and methods of analysis

Cont· · ·

The regularized a posterior density, πpost(x) = π(x|y, 0), can be written as

πpost(x) = π(x|y, 0) ∝ exp
[
−
1

2
(Arx)TΣ−1

r (Arx)

]
× exp

[
−
1

2
(y− Ax)TΣ−1

ε (y− Ax)

]
,

where πpr(x) ∝ exp
[
− 1

2 (Arx)TΣ−1
r (Arx)

]
is the distribution of difference prior with covariance matrix Σr.

By applying a similar maximization for the posteriori distribution given by Eq. (34), we can compute the
most probable values of the unknowns as( d

dx
(Ar x)

)T
Σ−1

r (Ar x)−
( d

dx
(Ax)

)T
Σ−1
ε (y− Ax)− (y− Ax)T Σ−1

ε

d

dx
(Ax) = 0. (34)

Handling the differentiation with respect to x and applying the matrix multiplication identity,
AT Σ−1

ε B = BT C−1
ε A, will lead us to have

2AT
r Σ−1

r Ar x− 2AT Σ−1
ε y + 2AT Σ−1

ε Ax = 0. (35)

Further rearrangements result in

(AT
r Σ−1

r Ar + AT Σ−1
ε A)x− AT Σ−1

ε y = 0. (36)

Solving for x = xMAP gives

xMAP = (ATΣ−1
ε A + AT

r Σ−1
r Ar)−1ATΣ−1

ε y. (37)

Eq. (37) is commonly known as Maximum of a Posteriori Estimate (MAP) of the unknowns.
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Data and methods of analysis

Cont· · ·

We have used Chapman profile as a priori profile of the Ne in the form of priori covariance matrix, Σr.

The variance (error) estimate of the statistical linear inversion can be obtained from the posterior
covariance matrix, pcovmat = (ATΣ−1

ε A + AT
r Σ−1

r Ar)−1, in such a way that the diagonal elements of
this matrix belong to the square of the variances of the estimated error.

Thus the variances, which are the square root of the diagonal elements of the posterior covariance matrix,
can be considered as the error estimate of the employed inversion approach.
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Results and discussions

Sample ray path and the EIA movement/dimension from vTEC
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Results and discussions

Validation
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Results and discussions

Diurnal and seasonal variations of the EIA
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Results and discussions

Cont· · ·
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Results and discussions

Cont· · ·
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Results and discussions

Daily variations of the EIA
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Results and discussions

Storm-time responses: 09 March 2012 storm

−20

−10

0

10

20

B
z
 
(
n
T
)

06/03/12 (QD) 08/03/12 09/03/12 10/03/12

200

400

600

800

V
s
w
 
(
k
m
/
s
)

−20

−10

0

10

20

E
y
 
(
m
V
/
m
)

0 12 0 12 0 12 0 12
−150

−100

−50

0

50

D
s
t
 
(
n
T
)

← UT (hrs)

0 12 0 12 0 12 0 12
−20

−10

0

10

20

B
z
 
(
n
T
)

06/03/12 (QD) 08/03/12 09/03/12 10/03/12

0 12 0 12 0 12 0 12
−150

−100

−50

0

50

D
s
t
 
(
n
T
)

G
e
o
M
L
a
t
 
(
d
e
g
)

← UT (hrs)

 

 

0 12 0 12 0 12 0 12

−10

0

10

(
 
e
l
/
m
3
)

0.5

1

1.5

2

2.5

x 10
12

−15 −10 −5 0 5 10
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

12

GeoMLat (deg)

N
e
 
(
e
l
/
m
3
)

09 Mar. 2012 storm

 

 

Quiet (06 Mar.)

Disturbed (09 Mar.)

0 12 0 12 0 12 0 12
−150

−100

−50

0

50

D
s
t
 
(
n
T
)

06/03/12 (QD) 08/03/12 09/03/12 10/03/12

← UT (hrs)

0 1 2
0

500

1000

 Ne(el/m
3
)× 10

12

A
l
t
i
t
u
d
e
 
(
k
m
)

GeoMLat=9.62
0
 N

0 1 2

 Ne(el/m
3
)× 10

12

GeoMLat=9.62
0
 N

0 1 2

Ne(el/m
3
)× 10

12

GeoMLat=9.62
0
 N

0 1 2

 Ne(el/m
3
)× 10

12

GeoMLat=9.62
0
 N

GeoMLat (deg)

A
l
t
i
t
u
d
e
 
(
k
m
)

−10 0 10

200

400

600

800

1000

GeoMLat (deg)
−10 0 10

200

400

600

800

1000

GeoMLat (deg)
−10 0 10

200

400

600

800

1000

GeoMLat (deg)

 

 

−10 0 10

200

400

600

800

1000

(
 
e
l
/
m
3
)

0

0.5

1

1.5

2

x 10
12

Kassa (WaGRL, BDU, Ethiopia) Spatiotemporal characteristics 02-06 March 2015 38 / 45



Results and discussions

Temporal variations of NmF2 of the EIA
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Results and discussions

Spatial variations of the EIA

The spatial variations of the EIA can be seen in terms of its altitude and latitude
profile of the EIA at 21:00 LT in a particular day (DOY 356) and season (December
solstice).

This can be seen from the middle panel of Fig. (35) at 21:00 LT. In this Fig., it is
manifested that the maximum of the EIA is appeared around 312 km and its thickness
along the altitude is found to be between 180 km to 450 km (270 km) during
December solstice.
Moreover, the latitude profile of the EIA advocated that the ionosphere is pinched
around the equator and thickened around 6.30 N to 110 N GeoMLat (with a thickness
of 50 ' 555 km).

This might be explained by an ionization transport mechanism commonly referred to
as the equatorial fountain effect and the later downward diffusion of ionization along
the magnetic field lines (Andreeva et al., 2000).

Kassa (WaGRL, BDU, Ethiopia) Spatiotemporal characteristics 02-06 March 2015 40 / 45



Conclusions

Conclusions

We have produced the images of the EIA by applying Bayesian inversion theory.

We have described the temporal, spatial and storm-time variations of the EIA. The
diurnal variations of EIA was found to be dependent on the position of the sun over
the horizon and the daily variations have been explained by the occurrence of storm
events.
We have also shown that the EIA behaves differently on different seasons and
pronounced EIA has been observed during Equinox than solstice seasons.

Even if a sharp rise in EIA from about 09:00 to 16:00 LT was observed at all seasons,
the strength is high in equinoctial months followed by December and June solstices.

Seasonal variations of the EIA depend not only on production and loss of ionization
but also on the transport of plasma through winds and on thermospheric neutral
composition variations.

The strong EIA in equinox months are due to high values of solar intensity.

Due to the combined effect of the trans-equatorial wind and the auroral equator-ward
wind there is an occurrence of an asymmetry of the two crests of the EIA.
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Conclusions

Cont· · ·

During solstice the two crests move equator ward but during equinox the two crests
move slightly poleward.

The investigation on the spatial parameters has shown that the EIA varies along both
altitude and latitude coordinates.
The synthesis on the peak of the EIA (NmF2) has demonstrated a significant
dependence of NmF2 on local time, day and season of the year.

The storm-time analysis has also reveled that the EIA responds differently during
geomagnetically disturbed and stable situations.

The enhanced EIA at 18:00 UT (longer time after the onset of the storm) might be
observed by the disturbance dynamo electric field due to the storm-time circulation
(Fejer and Scherliess, 1995).

In terms of the the appearance of the daytime EIA (the peak and the width), we have
observed that the northern crest predominately appeared well whereas the southern
anomaly relatively inhibited during the geomagnetic storm we considered.

This implies that the effect of the storm has a clear latitudinal (spatial) dependance or
means that the effects of storm has propagated along the latitude.
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