
Contributions of the Nobeyama Radioheliograph to Space Weather Research

S. Masuda (STEL, Nagoya University), K. Shibasaki (NSRO, NAOJ) and N. Gopalswamy (GSFC, NASA)

Nobeyama Radioheliograph (NoRH)

FoV: full Sun Antenna diameter: 80 cm Number of antennas: 84 Baseline: NS 250 m, EW 500 m Frequencies: 17, 34 GHz Spatial res.: 10 arcsec@17GHz, 5 arcsec@34 GHz Polarization: circular pol. @17 GHz Time res.: normal 1 sec, event 0.1 sec Operation start: July 1992 (17GHz), November 1995 (34GHz) Observational time: 22:30 - 6:30 UT

SOLAR NORTH IS UP CENTER (257,257)/ PIXEL PEAK 30320 K PIXEL SIZE 4.911 (ARCSEC) SOLAR RADIUS 981.426 (ARCSEC) SOLAR POLAR ANGLE -19.8181 (DEGREE) SOLAR BO -7.0956 (DEGREE) DATA LOGSCALE MAX=1E4.8 : MIN=1E3

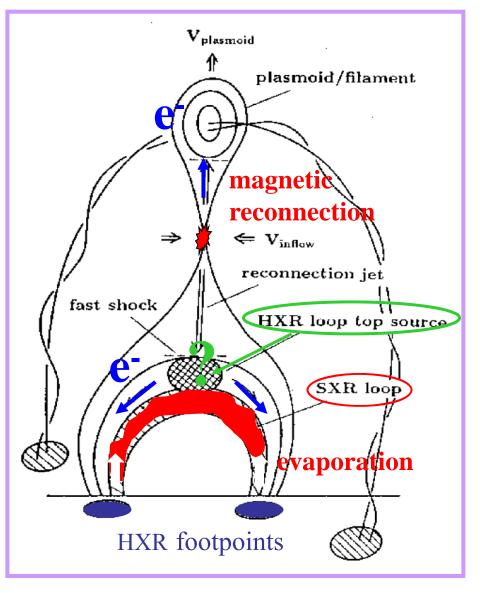
Scientific topics

NoRH is a powerful tool for space weather research.

Solar flares

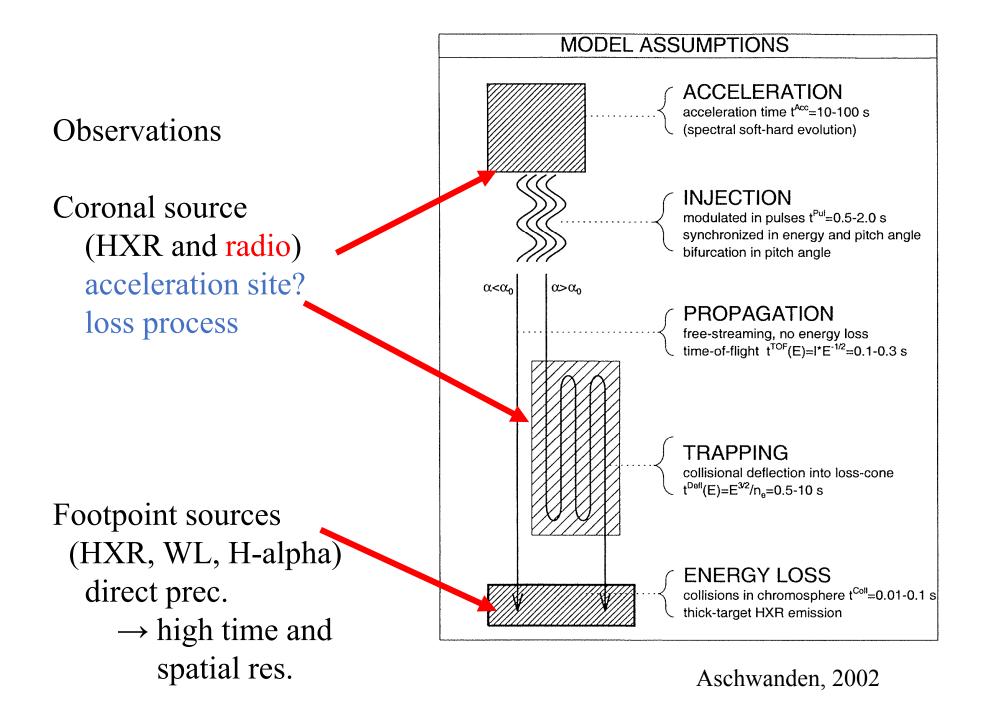
17 and 34 GHz
→ High-energy electrons (~MeV)
0.1 sec time resolution
→ transport of high-energy electrons

Prominence eruptions

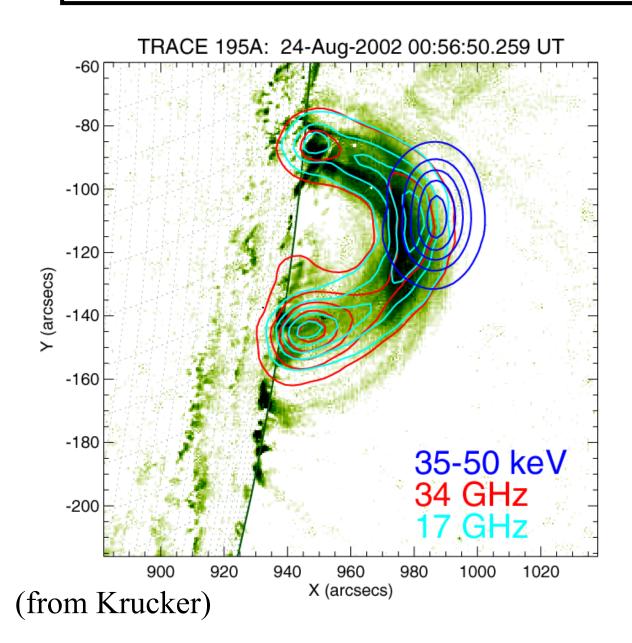

no weather (rain, cloud) effect → good for monitoring no Doppler shift

 \rightarrow possible to follow it even at the higher altitude (~ 2 Rs)

~ 700 solar flares were observed with NoRH since 1992. All of images/movies are open at the web page of NoRH.


Nobeyama Radioheliograph Event List														
See Note belo	w.													
2014														
EventID	Date	Peak	Durat-	Cor (x	Bright-	F1 7G	F34G	Area Pos	si-	х	Y	#imp- GOES	NDAA Keyword	
		(UT)			ness (K)	(SFU)		Ratio tio		(")	(")	ulse		Energy (ke
	21 2014-12-20				4.7e+07	1561	757	9.5 S1		447	-300	11	Flare	
20141217 04 20141214 01			8808		8.0e+06	236 48	52 21	4.5 S1 2.0 S0		-152 -913	-285 -157	0	Flare	
	2014-12-14 16 2014-12-13		991 3611		3.4e+06 1.2e+07	228	113	2.6 50		-913	-157	0 0	Flare Flare	
	38 2014-12-13 38 2014-12-08		1998		6.0e+06	220	27	2.0 50		879	-349	0	Flare	
20141122 06			1760		3.4e+06	107	37	2.4 S1		393	-265	ō	Flare	
20141122 00			797		2.2e+06	34	3	2.1 51		383	-275	ő	Flare	
20141113 06			1816		2.9e+06	72	22	2.0 51		-933	-187	õ	Flare	3-6
20141110 02			801		2.0e+07	238	88	2.8 N1		-64	187	ō	Flare	12-25
20141030 01					6.8e+06	85	3	0.9 S1		928	-255	Ō	Flare	25-50
20141030 00	35 2014-10-30	00:35:31	525	1075	1.7e+07	220	1204	0.6 S1		923	-250	0	Flare	100-300
20141029 23		23:01:47	303	318	3.0e+06	50	1	0.6 S1	3W74	913	-250	0	Flare	12-25
20141029 22	19 2014-10-29	22:49:22	41	1262	1.1e+07	169	130	2.1 S1	8W73	889	-324	0	Flare	
20141029 05	28 2014-10-29	05:28:42	7362	179	1.7e+06	26	18	0.1 S1	3W66	874	-255	0	Flare	25-50
	39 2014-10-29		1087		4.8e+07	903	614	2.1 S1	3W68	884	-255	0	Flare	
	L3 2014-10-29		293		5.1e+06	54	5	0.4 S1		874	-260	0	Flare	12-25
	<u>49</u> 2014-10-29		91		4.5e+06	25	3	0.4 S1		869	-260	0	Flare	12-25
20141029 01					7.2e+06	59	19	0.8 51		850	-329	0	Flare	25-50
20141029 00			3020		2.8e+06	29	0	0.2 S1		859	-265	0	Flare	6-12
20141028 22			41		2.1e+06	8	1	0.0 S1		855	-270	0	Flare	
20141028 05			544		4.3e+06	71	87	1.0 S14		786	-295	0	Flare	6-12
20141028 03			1682		1.7e+07	216	92	-0.0 S1		776	-285	0	Flare	25-50
20141028 02	7 2014-10-28	02:17:29	1389	199	6.3e+06	52	31	0.7 S1	5W54	766	-300	0	Flare	25-50

"Standard flare model"



- 1) Release of magnetic energy
- 2) particle are accelerated (not understood)
- 3) Acc. electrons produce HXR emission (mostly footpoints)
- 4) Above loop top HXR source not understood
- 5) collisional losses of acc. electrons heat plasma
- 6) "evaporation" fills loop

from Shibata

Event study using RHESSI and NoRH data

Green color: EUV image (TRACE) thermal plasma

Blue contours: HXR (RHESSI) ~100 keV electrons

Red and light-blue contours: microwave (Nobeyama Radio Heliograph) ~ MeV electrons

Scientific topics

NoRH is a powerful tool for space weather research.

Solar flares

17 and 34 GHz
→ High-energy electrons (~MeV)
0.1 sec time resolution
→ transport of high-energy electrons

Prominence eruptions

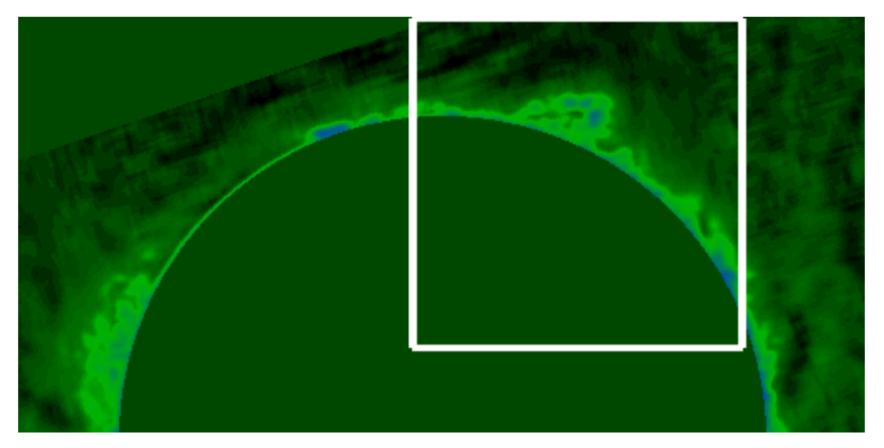
no weather (rain, cloud) effect → good for monitoring no Doppler shift

 \rightarrow possible to follow it even at the higher altitude (~ 2 Rs)

Nobeyama Radioheliograph Limb Events

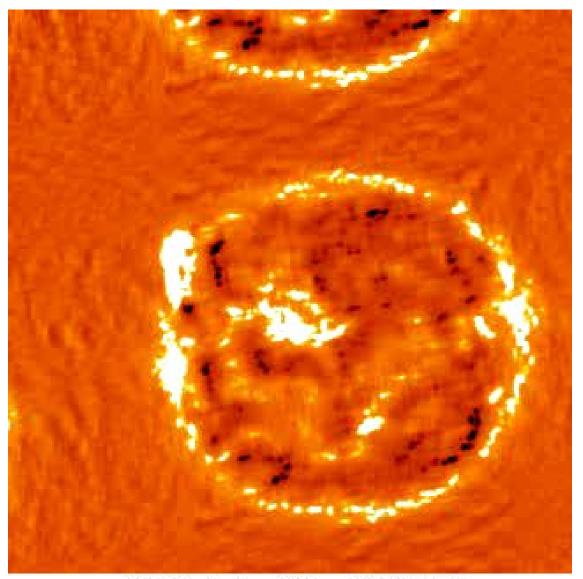
2014

Event ID	Date	Start (UT)	Peak (UT)	End (UT)	χ (arcsec)	γ (arcsec)	Index (Pixel)
PE20140726 2320	26-Jul-14	23:20:02	23:20:02	00:20:02	406	1022	440
PE20140722 2340	22-Jul-14	22:50:02	23:40:02	00:00:02	671	826	407
PE20140710 0620	10-Jul-14	05:50:02	06:20:02	06:20:02	1073	-227	716
PE20140704_0200	04-Jul-14	02:00:03	02:00:03	02:40:03	-822	720	411
PE20140702 0120	02-Jul-14	01:10:00	01:20:00	01:30:00	-983	64	497
PE20140609 0010	09-Jun-14	00:00:01	00:10:01	00:40:01	-1145	-266	2553
PE20140531 0310	31-May-14	02:50:01	03:10:01	03:20:01	802	-676	541
PE20140523 0620	23-May-14	06:00:00	06:20:00	06:20:00	-795	-689	537
PE20140517_0540	17-May-14	05:40:01	05:40:01	06:10:01	-1030	359	403
PE20140511 0020	11-May-14	00:00:01	00:20:01	00:30:01	-564	-852	847
PE20140509 0250	09-May-14	02:30:00	02:50:00	03:10:00	1108	-338	2339
PE20140428 0130	28-Apr-14	01:30:03	01:30:03	02:10:03	1198	-320	1224
PE20140421 0340	21-Apr-14	03:30:02	03:40:02	04:10:02	1017	424	1199
PE20140421 0100	21-Apr-14	00:40:02	01:00:02	01:20:02	947	-649	867
PE20140410 0040	10-Apr-14	00:40:00	00:40:00	01:00:00	-678	-785	571
PE20140406 0200	06-Apr-14	01:40:02	02:00:02	02:20:02	-941	-544	977
PE20140405 0000	04-Apr-14	23:40:02	00:00:02	00:00:02	-933	-594	2967
PE20140326_0520	26-Mar-14	05:10:03	05:20:03	05:40:03	-641	-818	682
PE20140224 2330	24-Feb-14	23:20:01	23:30:01	23:40:01	737	-759	628
PE20140219_0600	19-Feb-14	06:00:01	06:00:01	06:20:01	75	-1015	498
PE20140217_0530	17-Feb-14	04:40:02	05:30:02	05:40:02	1120	-203	2094
PE20140216_0110	16-Feb-14	01:10:03	01:10:03	01:30:03	1029	1012	1808
PE20140212_0620	12-Feb-14	06:00:03	06:20:03	06:20:03	769	-660	676
PE20140117_2300	17-Jan-14	22:50:01	23:00:01	23:10:01	-432	-914	452
PE20140116_2250	16-Jan-14	22:50:02	22:50:02	23:10:02	-527	-861	664
PE20140106_0610	06-Jan-14	06:00:03	06:10:03	06:20:03	-975	592	1695
PE20140103_0340	03-Jan-14	03:30:00	03:40:00	04:00:00	-1142	364	1098


http://solar.nro.nao.ac.jp/norh/html/prominence/

The Resulsts of Automatic Detection of Limb Events using Radio Heliograms (17 GHz)

EVENT_ID : PE20140726_2320


 Event_ID
 Date
 Start (UT) Peak (UT) END (UT) X (arcsec) Y (arcsec) Index

 PE20140726_2320
 26-Jul-14
 23:20:02
 00:20:02
 406
 1022
 440

Radio-Coronagraph

Prominence eruption observed with NoRH

1992 July 31 00:15UT Y. Hanaoka

Summary

NoRH is a unique instrument even in the world which provides fundamental and high-quality microwave images in this frequency range. There is no doubt that NoRH is one of the powerful tool for Space Weather and also Space Climate research.

From April 2015, an international consortium, ICCON, will begin the operation of NoRH instead of NAOJ. We need more contribution for the stable operation of NoRH and for producing more scientific outputs.

Any contribution is welcome for the continued operation.

ICCON: International Consortium for the Continued Operation of Nobeyama Radioheliograph N. Gopalswamy (NASA), Y. Yan (NAOC), K. S. Cho (KASI), M. Ishii (NICT), K. Shibasaki, and S. Masuda (STEL, Nagoya U.)