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Objective

In data analysis, the first step is to build an appropriate mathematical or
stochastic model to describe the data so that further studies can be done with
the help of the models.

Here we consider several types of situations and the appropriate models to
describe each situation.

Input-output type mechanism is considered first, where reactions, diffusions,
reaction-diffusion, production-destruction, decay type physical situations can fit
in.

Techniques are described to make thicker or thinner tails in stochastic models.

Pathway idea is described where one can switch around to different functional
forms through a parameter called the pathway parameter.
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Introduction

Here we consider models which describe short-term behavior of data or behavior
within one cycle if a cyclic behavior is noted.

For example, when monitoring solar neutrinos it is seen that there is likely to be
an eleven year cycle and within each cycle the behavior of the graph is
something like slow increase with several local peaks to a maximum peak and
slow decrease with humps back to normal level.

Similarly, while monitoring the production of the chemical called melatonin in
human body the nightly cycle each night shows the same type of behavior of
slow rise starting in the evening with local peaks to a maximum peak, then slow
decrease, with humps, back to normal level by the morning.

In such situations, what is observed is not really what is actually produced.

Many of natural phenomena belong to this type of behavior of the form u = x − y
where x is the input or production variable and y is the output or consumption or
destruction or decay variable and u represents the residual part which is
observed.

A general analysis of input-output situation may be seen from Mathai (1993).
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Introduction

In reaction-rate theory, certain particle may react with each other in short-span or
short-time periods and produce small number of particles, others may take
medium time internals and produce larger numbers of particles and yet others
may react over a long span and produce larger number of particles.
For describing such types of situations in the production of solar neutrinos we
consider mathematical models by erecting triangles whose ares are proportional
to the neutrinos produced, see Haubold and Mathai (1995).
Another approach that was adopted was to assume x and y as independently
distributed random variables, then work out the density of the residual variable
under the assumption that x − y ≥ 0.
The simplest such situation is an exponential type input and an exponential type
output.
Then the input-output model has the Laplace density, when x and y are
identically and independently distributed and the density is given by,

f1(u) =
β1

2
e−β1|u−α1|, 0 ≤ u <∞, β1 > 0 (1.1)

and f1(u) = 0 elsewhere, where α1 is a location parameter and β1 is a scale
parameter.
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Introduction

Suppose that this situation is repeated at successive locations and with the scale
parameter β = β1, β2, .... Then the nature of the graph will be that of a sum of
Laplace densities. If the location parameters are sufficiently farther apart then
the behavior of the graph is shown in the following Figure 1(a):

Figure 1(a)

If such blips are occurring sufficiently close together then we have a graph of the
type in Figure 1(b).

Figure 1(b)
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Introduction

Here β1 measures the intensity of the blip and α1 the location where it happens,
and each blip is the residual effect of an exponential type input and an
independent exponential type output of the same strength.

If α1, α2, ... are farther apart then the contributions coming from other blips will
be negligible and if α1, α2, ... are close together then there will be contributions
from other blips.

Then the function will be of the following form:

h(u) =
k∑

j=1

βj

2
e−βj |u−αj |, 0 ≤ u <∞, βj > 0, j = 1, ..., k <∞ (1.2)

If the arrival of the location points (αj ) is governed by a Poisson process then we
will have a Poisson mixture of Laplace densities.
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Introduction

A symmetric Laplace density will be of the following form:

f (u) =
1

2β
e−
|u|
β , −∞ < u <∞ (1.3)

and the graph is of the following form:

Figure 2: Symmetric Laplace density

If the behavior of u is different for u < 0 and u ≥ 0 then we get the asymmetric
Laplace case which can be written as

g(u) =


1

(β1+β2)
e

u
β1 , −∞ < u < 0

1
(β1+β2)

e
− u

β2 , 0 ≤ u <∞
(1.4)
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Introduction

The graph of g(u) is given in the following figure:

Figure 3: Asymmetric Laplace case

When α1 > 1, α2 > 1, α1 = α2 = α, β1 = β2 = β we have independently and
identically distributed gamma random variables for x and y and u = x − y is the
difference between them. Then g1(u) can be seen to be the following:

g1(u) =
u2α−1e−

u
β

β2αΓ2(α)

∫ ∞
z=0

(1 + z)α−1zα−1e−
1
β

(2uz)dz (1.5)

for u ≥ 0, α > 0, β > 0. This behaves like a gamma density and provides a
symmetric model for u ≥ 0 and u < 0.
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Introduction

Graph is given in the following Figure 4:

Figure 4: g1(u) in the symmetric gamma type input-output variables
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Gamma model with appended Mittag-Leffler function

Consider a gamma density of the type

g3(x) = c1 xγ−1e−
x
δ , δ > 0, γ > 0, x ≥ 0.

Suppose that we append this g3(x) with Mittag-Leffler function Eβα,γ(−xα)
where

Eβα,γ(−axα) =
∞∑

k=0

(β)k

k!
(−a)k xαk

Γ(γ + αk)
, α > 0, γ > 0.

Then we get the density as

f∗(x) =
(1 + aδα)β

δγ
xγ−1e−

x
δ

∞∑
k=0

(β)k

k!

(−a)kδαk

Γ(γ + αk)

for 0 ≤ x <∞, α > 0, γ > 0, δ > 0, β > 0, |aδα| < 1, aβδα < 1.

Note that a = 0 corresponds to the original gamma density.
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Consider a gamma density of the type

g3(x) = c1 xγ−1e−
x
δ , δ > 0, γ > 0, x ≥ 0.

Suppose that we append this g3(x) with Mittag-Leffler function Eβα,γ(−xα)
where

Eβα,γ(−axα) =
∞∑

k=0

(β)k

k!
(−a)k xαk

Γ(γ + αk)
, α > 0, γ > 0.

Then we get the density as

f∗(x) =
(1 + aδα)β

δγ
xγ−1e−

x
δ

∞∑
k=0

(β)k

k!

(−a)kδαk

Γ(γ + αk)

for 0 ≤ x <∞, α > 0, γ > 0, δ > 0, β > 0, |aδα| < 1, aβδα < 1.

Note that a = 0 corresponds to the original gamma density.
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Gamma model with appended Mittag-Leffler function

The following are some graphs of the appended Mittag-Leffler-gamma density.
When a < 0 we have thinner tail and when a > 0 we have thicker tails compared
to the gamma tail.

Figure 5: Gamma density with Mittag-Leffler function appended
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Bessel appended gamma density

Consider the model of the type of a basic gamma density appended with a
Bessel function

f̃ (x) = c xγ−1e−
x
δ

∞∑
k=0

xk (−a)k

k!Γ(γ + k)
, δ > 0, γ > 0, x ≥ 0

where c is the normalizing constant.

The appended function is of the form

1
Γ(γ)

0F1( ; γ : −ax)

which is a Bessel function.

Hence the density is of the form

f̃ (x) =
eaδ

δγ
xγ−1e−

x
δ

∞∑
k=0

xk (−a)k

k!Γ(γ + k)
, x ≥ 0, γ > 0, δ > 0.
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Bessel appended gamma density

The behavior of the density for different values of a is given in the following
Figure 6.

Figure 6: Gamma appended with Bessel function
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Pathway idea

Consider a model which can switch around to three functional forms covering
almost all statistical densities in current use, see Mathai(2005). Let

f∗1 (x) = c∗1 |x |
γ [1− a(1− α)|x |δ)

η
1−α , α < 1, η > 0, a > 0, δ > 0 (3.1)

and 1− a(1− α|x |δ > 0, where c∗1 is the normalizing constant.
When α < 1 the model in (3.1) stays as the generalized type-1 beta family,
extended over the real line.
When α > 1 write 1− α = −(α− 1) with α > 1. Then the functional form in
(3.1) changes to

f∗2 (x) = c∗2 |x |
γ [1 + a(α− 1)|x |δ]

− η
α−1 (3.2)

for α > 1, a > 0, η > 0,−∞ < x <∞. Note that (3.2) is the extended
generalized type-2 beta family of functions.
When α→ 1 then both (3.1) and (3.2) go to

f∗3 (x) = c∗3 |x |
γe−aη|x|δ , a > 0, η > 0, δ > 0,−∞ < x <∞. (3.3)

Here (3.3) is the extended generalized gamma family of functions.
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Pathway idea

Thus (3.1) is capable of switching around to three families of functions. This is
the pathway idea and α here is the pathway parameter. Through this parameter
α one can reach the three families of functions in (3.1),(3.2),(3.3). Pathway idea
was introduced by Mathai (2005).

For x > 0, γ = 0, a = 1, δ = 1, η = 1 in (3.1) is the famous Tsallis statistics in
non-extensive statistical mechanics.

For a = 1, δ = 1, η = 1 in (3.2) is the superstatistics in statistical mechanics.

For more details we can refer to the works of Haubold and Mathai (2007), Mathai
and Haubold (2007, 2008, 2011).
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Reaction rate probability integral model

The basic model is an integral of the following form:

I(1) =

∫ ∞
0

xγ−1e−axδ−zx−ρ
, a > 0, z > 0, ρ > 0, δ > 0. (4.1)

For ρ = 1
2 , δ = 1 one has the basic probability integral in the non-resonant case,

see Haubold and Mathai (1988).
For γ = 0, ρ = 1 one has Krätzel integral, seeMathai (2012).
For γ = 0, δ = 1, ρ = 1 one has inverse Gaussian density.
The integral in (4.1) is a product of integrable functions, so one can evaluate the
integral in (4.1) with the help of Mellin convolution of a product.
By applying the Mellin convolution technique we get

I(1) =
1

2πi

∫ c+i∞

c−i∞

1

ρδa
γ
δ

Γ(
s + γ

δ
)Γ(

s
ρ

)(ua
1
δ )−sds, u = z

1
ρ , i =

√
−1

=
1

ρδa
γ
δ

H2,0
0,2 [z

1
ρ a

1
δ
∣∣
(0, 1

ρ
),( γ

δ
, 1
δ

)
] (4.4)

where H(·) is the H-function, see Mathai and Haubold(2008), Mathai et al.
(2010).
From the basic result in (4.4) we can evaluate the reaction-rate probability
integrals in the other cases of non-relativistic reactions.
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Generalization of reaction-rate models

Consider the integral

I(2) =

∫ ∞
0

xγe−axδ−zxρ
dx , a > 0, δ > 0, ρ > 0, z > 0. (4.5)

In (4.1) we had x−ρ with ρ > 0 whereas in (4.5) we have xρ with ρ > 0.
For δ = 1, (4.5) corresponds to the Laplace transform or moment generating
function of a generalized gamma density in statistical distribution theory.
(4.5) can be written in the form of an integral of the form∫ ∞

0
vf1(v)f2(uv)dv , f1(x) = xγ−1e−axδ

, f2(y) = e−yρ
(4.6)

for u = z
1
ρ .

The integral in (4.6) is in the structure of a Mellin transform of a ratio u = y
x so

that by applying Mellin convolution technique we can evaluate I2.
A generalization of I(1) and I(2) is the pathway generalized model, which results
in the versatile integral.
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Generalization of reaction-rate models

Consider the integrals of the following types:

Ip =

∫ ∞
0

xγ [1 + a(q1 − 1)xδ]
− 1

q1−1 [1 + b(q2 − 1)xρ]
− 1

q2−1 dx (4.8)

where q1 > 1, q2 > 1, a > 0, b > 0,. We will keep ρ free, could be negative or
positive.

Here
lim

q1→1,q2→1
Ip =

∫ ∞
0

xγe−axδ−bxρ
dx

which is the integral in (4.5) and if ρ < 0 then it is the integral in (4.1).

The general integral in (4.8) belongs to the general family of versatile integrals.

The whole collection of such models is known as the versatile integrals
applicable in a wide variety of situations.

Integral transforms, known as P-transforms, are also associated with the
integrals in (4.8), see for example Kumar and Kilbas (2010), Kumar (2011).
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Fractional calculus models

Fractional integral operators of the second kind or right-sided fractional integral
operators can be considered as Mellin convolution of a product as in (4.2) and
left-sided or fractional integral operators of the first kind can be considered as
Mellin convolution of a ratio where the functions f1 and f2 are of the following
forms:

f1(x) = φ1(x)(1− x)α−1, 0 ≤ x ≤ 1, f2(y) = φ2(y)f (y) (4.9)

where φ1 and φ2 are pre-fixed functions, f (y) is arbitrary and f1(x) = 0 outside
the interval 0 ≤ x ≤ 1.
Thus, essentially, all fractional integral operators belong to the categories of
Mellin convolution of a product or ratio where one function is a multiple of type-1
beta form and the other is arbitrary.
The right-sided or type-2 fractional integral of order α is denoted by D−α2,u f and
defined as

D−α2,u f =

∫
v

1
v

f1(
u
v

)f2(v)dv (4.10)

and the left-sided or type-1 fractional integral of order α is given by

D−α1,u f =

∫
v

v
u2

f1(
v
u

)f2(v)dv (4.11)

where f1 and f2 are as given in (4.9).
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Fractional calculus models

Let D = d
du the ordinary derivative with respect to u and Dn be the n-th order

derivative. Then the fractional derivative of order α is defined as

Dαf = Dn[D−(n−α)
i,u f ] in the Riemann-Liouville sense and

Dαf = [D−(n−α)
i,u f ]Dn in the Caputo sense (4.12)

for i = 1, 2, where n be a positive integer such that <(n − α) > 0.

The input-output model when applied to reaction-diffusion problems can result in
fractional order reaction-diffusion differential equations.

Such fractional order differential equations are seen to provide solutions which
are more relevant to practical situations compared to the solutions coming from
differential equations in the conventional sense or involving integer-order
derivatives. For more details see, Haubold and Mathai (2000, 2002), Haubold et
al. (2010, 2011).
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Analytic solar models

Suppose the matter density distribution has the following form:

f (x) = ρ0[1− xδ]γ , 0 ≤ x ≤ 1 (5.1)

where x = r
rS

where rS is the radius of the Sun and r is an arbitrary distance
from the center of the Sun.

Here ρ0 is the core density or the constant, when r → 0, δ and γ are parameters
to be adjusted so that mass, pressure, luminosity etc will match with
observational data.

A sample of the work in this direction may be seen from Haubold and Mathai
(1995, 1997, 1998).
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