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Planetary magnetospheres



Magnetospheres of solar system planets
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Figure 2 Orientations of the planets and their magnetic fields.

Bagenal, F., Giant planet magnetospheres, In: Annual review of earth and planetary sciences, 20,289, 1992



The solar wind plays a main role in a formation of planetary magnetospheres

*Solar wind (SW) - stream of charged particles (electrons and protons ) ejected
from the Sun's hot corona.

* speeds of about 300 - 800 km/s; density at 1 AU ~3-20 cm-3

 conductivity of the solar wind plasma is high -> the solar magnetic field is
“frozen into” the solar wind -> Solar wind carries magnetic field from the Sun to
the interplanetary space



Planetary Magnetosphere

Solar wind modifies the form of the magnetosphere, by pushing it in in the
dayside and creating a long magnetotail in the nightside



Earth’s magnetosphere
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Magnetospheres of solar system planets
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Solar wind interaction with magnetospheres.
Substorms and auroras.



Magnetospheric substorm

Animation that explains the magnetospheric substorm

Credit & Copyright : NASA/Goddard Space Flight Center - Conceptual Image Lab



Aurora (polar light) observed in polar regions

Credit: Joshua Strang, USAF, Wikipedia S ' CreditCopyright: D. Hutchinson

Northen and southern polar lights (auroras) typically are observed in polar regions
between 65 to 75 deg north and south latitudes.



Aurora (polar light) observed in polar regions

Credit & Copyright: Terje Sorgjerd, Norway




Aurora observed from space

IMAGE —FLIV 511!

A view of the Auroras as seen from the International
Space Station, Sep. 2011. Animation of aurora in ultraviolet
UV aurora observed by IMAGE spacecraft

Auroras are a visible manifestation of an interaction between
magnetized planet and solar wind.




Jovian and Saturn’s aurorae
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Ganymede and Europa footpnnts
The ultraviolet image of the Jovian aurora taken by Hubble

Space Telescope's Photo credit: John T. Clarke (U. Michigan),
ESA, NASA

The ultraviolet image of the southern Saturn’s aurora
taken on January 28, 2004 by the Hubble Space
Telescope's Photo credit: NASA, ESA, J. Clarke
(Boston University), and Z. Levay (STScl).



Planetary radio emissions

Five planets, Earth, Jupiter, Saturn, Uranus, and Neptune produce
powerful radio emissions



Non-thermal radio waves in the Earth’s magnetosphere

The Earth’s magnetosphere - wide variety of wave phenomena:

* Electrostatic waves (Langmuir Waves, ion-acoustic, ion-cyclotron,
electron-cyclotron)

 MHD waves (Alfvén, Magnetosonic waves ) - coupling forces
between the magnetic field and highly conductive plasma.

 Electromagnetic waves (whistlers, chorus, auroral hiss, Auroral
Kilometric radiation)



Structure of AKR sources

Louarn et al.;: J.G.R. 95, 5983, 1990
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General scenario auroral emission

generation:

*Energetic particles stream into polar
regions of magnetosphere

*Energy of the particle is converted
into  electromagnetic waves via
Cyclotron Maser Instability

CMI is a wave-particle interaction
process which based on stimulation of
cyclotron emission involving energetic
electrons gyrating in a magnetic field..



Flux Density at 1 A.U. (WmZHz")

Comparative spectra of auroral planetary radio emissions
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Planetary radio emissions
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Ground-based radio telescopes

image by SATorchinsky

Nancay Decametric Array UTR-2 radio telescope



Spaceborn observations of planetary radio emission
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STEREO (Solar TErrestrial
RElations Observatory)
consists of two spacecraft
(A and B), launched on
Oct. 25, 2006.

STEREO/WAVES covers
the frequency range up
to16 MHz.

SEPT-E. SEPT-MNS)

Cassini

Cassini, launched in Oct.
1997; in July 2004 it reached
Saturn. RPWS (Radio and
Plasma Wave Science) - is
designed to measure the
radio signals coming from
Saturnian planetary system
(1 Hz - 16MHz).

Wind

Wind spacecraft — a mission
launched on Nov. 1,1994 as

part of the International
Solar-Terrestrial Physics
(ISTP) program. WAVES

experiment onboard Wind
covers the frequency range
from a few Hz up to 14 MHz.



Concept of a sweep-frequency radio receiver
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Dynamic radio spectrum
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Terrestrial Auroral Kilometric radiation (AKR)

AKR

* Most powerful Earth's radio emission;

* Frequency ~ 20 KHz — 900 kHz (300 kHz -> A = 1 km);

» Emitted near the local gyro-frequency of electrons in low density source cavities;

« Strong correlation with the development of magnetospheric substorms and discrete arcs
in the auroral oval;

Interball-2 Polrad, 16 Nov. 1997
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Jovian

The most powerful radio
source in the Solar system

First emission detected
from the Earth in 1955

Two types of non-thermal
radio emission :

a) driven by solar wind-
magnetosphere interaction

b) driven by interaction
with lo satellite

radio emission

DAM (lo)
+ S-bursts

QP-bursts ?

TABLE 1. Characteristics of Jovian Radio Components

Component Frequency Radiated Source Comments
Name Range Power Location
DIM ~80 MHz - 300 GHz 2 GW radiation belts
DAM 2 - 40 MHz=z 400 GW Io torus field lines
HOM 0.2 - 2 MHz 1 GW* auroral field lines
bKOM 10 - 1000 kH=z 500 MW Io torus or auroral
nKOM 40 - 200 kHz 100 MW Io torus
Continuum 0.1 - 30 kHz 100 GW outer magnetosphere steep (f %)
spectrum
Fast drift 1 - 500 kHz large ?

* From Desch and Kaiser [1984]. All other table values after Carr ef al. [1983].




Jovian non-thermal radiation
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lo controlled DAM
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Saturn non-thermal radiation

Detected by Voyager

Frequency range - several kHz - 1.2 MHz with a peak between 100 kHz
and 400 kHz.

Strongly modulated by the planet rotation, T~ 10 h 45 m
Sources at local morning region of the magnetosphere
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Solar wind and planetary radio emission



SW and terrestrial auroral kilometric radiation (AKR)

The AKR intensity is correlated with the development of magnetospheric
substorms (Huff et al., 1988, Kurth and Gurnett, 1998, Hanasz et al., 2001),

which play an important role in transferring energy of the solar wind into the
magnetosphere (McPherron et al., 2005).
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The AKR is strongly linked with discrete aurora-arcs in the aurora-oval



SW influence on Jovian radio emission

close relationship between Jupiter’'s decametric radio emissions (DAM) and
solar activity (Gallet, 1957, Carr et al., 1958, Barrow, 1972, Carr and
Desch,1976, Genova et al. ,1989)

part of the non lo-DAM and strong UV auroral emission are triggered by
interplanetary shocks [Gurnett et al., 2002; Echer et al., 2010],

correlation between variations in the HOM energy and the solar wind
density; Desch and Barrow (1984) , Galopeau and Boudjada (2005)



Periodic bursts of non-lo DAM

STEREO-A/WAVES, 12-13 Sep., 2008 (DOY 256 - 257)
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*The source of the periodic bursts sub-corotates with Jupiter and it may be active during
longer periods of time.

» The averaged period of the burst recurrence is ~1.5 longer than System Ill (9.925 h)



Correlation with SW ram pressure

SW ram pressure - Ulysses measurements
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correlated with solar wind conditions around Jupiter
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Panchenko, M., et al., Periodic bursts of Jovian non-lo decametric radio
emission. Planetary and Space Science (2012),




The strong correlation between SKR intensity and solar wind
parameters

Since the Voyager mission it is known that the SKR is strongly affected by the solar wind, in
particular by the solar wind ram pressure (e.g. Desch and Rucker, 1983, 1985; Taubenschuss
et al., 2006, Rucker et al., 2007).
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probability of 95%.
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Rucker et al., “Saturn Kilometric Radiation as monitor for the solar wind?”, Advances in Space Research, 2007.



Conclusions

Five planets, Earth, Jupiter, Saturn as well as Uranus and
Neptune, produce powerful radio emissions.

The characteristics of the planetary radio emission are merely
depending on the dynamics and topology of the
magnetosphere as well as the solar wind environment.

Planetary radio emission is strongly controlled by the solar wind.
This makes planetary radiation to be an important information
source for remote diagnostics of planetary magnetospheres as
well as for monitoring of the solar wind activity.



Thank You for Your Attention
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