The Solar Interior From the perspective of an observer

Phil Scherrer Stanford University pscherrer@solar.Stanford.edu

We are here

Sun is way over there

Why We Care About the Solar Interior

- The Earth is in the Sun's extended atmosphere.
- Dynamic effects of magnetic fields emerging from the solar interior cause disruptions throughout the heliosphere.
- These disruptions, e.g. "Space Weather", cause disruptions to human technological systems – which we increasingly depend on.
- To understand the origins of these magnetically driven events and possibly them we must look to the solar interior.
- It is also fun to look inside a star.
 - Oh, I mean it is an intellectual challenge...
- But first a quick look at the exterior.

Quick stats and overview

• Things you already know

- Radius 6.96x10⁵ km
- Age 4.5x10⁹ years
- Mass 2x10³⁰ kg
- 73.4% hydrogen, 24.8% helium by mass.
- Luminosity 3.85×10^{26} J/s
- Center is 15.7 million °K.
- Surface temperature: 5,800 °K.
- Corona temperature: 1 to 10 million °K.

Handy Numbers

- Mm = 10⁶ m is handy unit for Sun
- Radius = 696 Mm, 953 arc-sec
- Diameter 1887 arc-sec in July to 1952 arc-sec in January
- Supergranule ~ 30 Mm
- Sunspot ~ 5 30 Mm
- Granule ~ 1 Mm
- 1 AU average distance to Sun 150,000 Mm
- 1 arc-sec disk center at 1 AU = 0.73 Mm
- Rotation 25.38 days, ~ 27.27 days at Earth at 16 degrees
- HMI pixel 365km, AIA pixel 438km at 1AU

Solar Core

- Hydrogen nuclei fuse to make Helium nuclei
- Via complex reaction chains the net effect is 2 H -> 1 He + energy
- From luminosity we know that 4.3x10⁹ kg/s of H is converted to He
 - Which is 0.007% per 10⁹ years
- The Sun is big, this is < 300watt/m³, like a compost pile.
- The energy is in gamma rays
- Neutrinos are byproduct, long story
- How we know
 - Stellar Models
 - Neutrinos
 - Helioseismology more later...
- Found about 1/3 expected neutrinos. After stellar model calculations
- Models confirmed by helioseismology. Solution was that physics was wrong – neutrinos have mass, thus finite lifetimes, they change kinds between there and here.

Radiative zone

- Gamma rays -> X-rays -> lower energy photons takes hundreds of thousands of years random walk to get through the core and radiative zone
- Thermal time scale is c. 30 million years.
- Stable against convection, probably buoyancy waves, aka gravity waves like at the ocean surface are possible.
- At cooler height where H and He and heavier atoms are no longer fully ionized and opacity increases.
- This is the transition to convection zone where energy is carried up by turbulent convection.
- Buoyancy waves convert to convection and any standing or resonant g-modes are evanescent in the convection zone. Too bad since they would sample the deep interior better than acoustic waves.

Convection Zone

- This is where it gets interesting and time scales go from millions of years to tens of years to months to days to minutes.
- For processes that take place in minutes to hours, such as acoustic waves the interior up to near the photosphere can be considered to be a perfect gas. Computational life is simple. Sort of....

• See:

http://www.cora.nwra.com/~wern e/eos/text/convection_zone.html

Numerical Model of Convection Zone

Radial Magnetic Field in a rotating convective spherical shell. Color legend: Dark tones for the negative polarity and bright tones for the positive polarity.

Photosphere

- Transition from simple to complex, gets 'simple' again well above.
- All the nice approximations that make calculations easy, or at least tractable, fail here. It is the place for observations and numerical simulations.
- Spectral line wings and continuum at top of granulation
- Line core above granulation (most photospheric lines)
- Below the photosphere the gas dominates, above the magnetic field dominates the structure.
- Photosphere and Chromosphere are perhaps worst places to observe in terms of complex physics.
- But it is where all the light comes from...

Photosphere – Some Numbers

Surface Gas Pressure (top of photosphere): 0.868 mb Pressure at bottom of photosphere (optical depth = 1): 125 mb Effective temperature: 5778 K Temperature at top of photosphere: 4400 K Temperature at bottom of photosphere: 6600 K Temperature at top of chromosphere: ~30,000 K Photosphere thickness: ~500 km Chromosphere thickness: ~2500 km Sun Spot Cycle: 11.4 yr.

Photosphere Composition:

Major elements: H - 90.965%, He - 8.889% Minor elements (ppm): O - 774, C - 330, Ne - 112, N - 102 Fe - 43, Mg - 35, Si - 32, S - 15

Helioseismology – What Is It?

Helioseismology is the study of solar interior by analysis of the propagation of sound waves through the Sun's interior.

The Sun is filled with acoustic waves with periods near five minutes.

These waves are refracted upward by the temperature gradient and reflected inward by the drop in density at the surface

The travel times of these waves depends on the temperature, composition, motion, and magnetic fields in the interior.

The visible surface moves when the waves are reflected enabling their frequency, phase, and amplitude to be measured.

Analysis of travel times over a multitude of paths enables inference of internal conditions.

Helioseismology – Quick Overview

- The Sun and most stars are filled with acoustic waves.
- These waves, in the Sun at least, are excited by the small (Mm) convective cells at the surface.
- The waves travel in all directions in the interior and with frequencies below a "cutoff frequency" reflect from near the surface.
- The waves have lifetime sufficient to travel through and around the Sun and the superposition of many wave packets can be detected as normal modes of oscillation.
- Analysis of the measured frequencies of these modes is referred to as "global helioseismology"
- Physical inferences are made by comparing measured frequencies to those calculated from solar models.

Solar interior wave modes

Cyclic frequencies as functions of degree *I*, computed for a normal solar model.

From "Lecture Notes on Stellar Oscillations", Joergen Christensen-Dalsgaard, 5th edition, 2014. Read this!

g modes are internal buoyancy modes,not yet observed (probably).f mode is a surface gravity wave.p modes are acoustic waves.

Modes are labeled by radial harmonic n, degree l, and order m.

Linear views of same

At low *I* the modes are nearly equally spaced, at higher *I* low radial number n they are nearly parabolas.

Lower turning points

Only low degree modes penetrate into the radiative zone

Where c is sound speed, $c = \omega/k$. We can separate radial and horizontal components of **k** as $|\mathbf{k}|^2 = k_r^2 + k_h^2$. Lower turning point is where radial part of wavenumber k_r vanishes. Using the relation $k_h^2 = l(l+1)/r$ we see that $r_t^2 = l(l+1) c^2 (r_t)/\omega^2$. Thus deeper with increasing frequency and lower *l*.

Sample ray paths. From JCD.

Figure 5.4: Propagation of acoustic waves, corresponding to modes with l = 30, $\nu = 3 \text{ mHz}$ (deeply penetrating rays) and l = 100, $\nu = 3 \text{ mHz}$ (shallowly penetrating rays). The lines orthogonal to the former path of propagation illustrate the wave fronts.

Solar Model Density and Temperature vs Depth

From JCD, Model 'S' data is available at http://users-phys.au.dk/jcd/solar_models/

Solar Model 'S' by Joergen Christensen-Dalsgaard

http://users-phys.au.dk/jcd/solar_models/

sound speed, etc for Model S (Christensen-Dalsgaard et al. 1996)
#
r/R c (cm/sec) rho (g/cm^3) p (dyn/cm^2) Gamma_1 T (K)
#

1.00071266.8643880e+053.2924832e-099.4557639e+021.64070534.3481956e+031.00070476.8657305e+053.4690527e-099.9627728e+021.64136124.3484914e+031.00069686.8670653e+053.6565446e-091.0501248e+031.64199694.3488194e+031.00068886.8684063e+053.8555865e-091.1073017e+031.64261754.3491832e+031.00068076.8697749e+054.0668379e-091.1679998e+031.64323284.3495866e+031.00067266.8712024e+054.2909950e-091.2324234e+031.64385524.3500339e+031.00066456.8726374e+054.5288000e-091.3007889e+031.64445954.3505299e+03

0.0014480 5.0466295e+07 1.5386289e+02 2.3489111e+17 1.6682847 1.5667737e+07 0.0014288 5.0466263e+07 1.5386369e+02 2.3489205e+17 1.6682845 1.5667756e+07 0.0014098 5.0466228e+07 1.5386447e+02 2.3489289e+17 1.6682847 1.5667775e+07 0.0013911 5.0466228e+07 1.5386501e+02 2.3489373e+17 1.6682845 1.5667793e+07 0.0000000 5.0465569e+07 1.5388936e+02 2.3492475e+17 1.6682847 1.5668470e+07

HMI – How It Works

HMI consists of a telescope, tunable filter, camera, and necessary electronics.

HMI images the Sun in four polarizations at six wavelengths across a spectral line.

The position of the line tells us the velocity while the shape changes of the line in different polarizations tell us the magnetic field direction and strength in the part of the Sun's surface seen by each pixel.

Long gap-free sequences of velocity measurements are needed to use the techniques of helioseismology.

How to Measur

HMI "Dopplergram"

Images of motion of the lay that the light comes from

Dark=moving to you

Light=moving away

HMI makes 4096x4096 pixe images in 6 wavelengths and polarizations for the "Doppl camera with a 45s cadence.

Velocity, magnetic field, and continuum intensity, line wi and line depth are computed.

Close-up of Sun's surface motion

Lighter is motion into Sun, darker is upward motion

Sun as a Star Average Velocity

HMI Disk average velocity, 7.5 hour sample from May 2010 Plots from sample analysis Python program

Sun as a Star Seismology

Sun as a Star p-mode spectrum for 20 days

The 135 μ Hz "large" separation gives information about the whole star, the *I*=1 – *I*=3 small separation gives information about the core.

Kepler: Solar analog

Observed Oscillations, SOHO/MDI

- *I-n* diagram for the Sun. This is for about 1 day.
- The red arrow as at about the acoustic cutoff frequency, waves below this frequency are trapped below the photosphere.
- Peak in power at about 5 minutes period
- Mode lifetimes decrease with increasing frequency
- Tens of thousands of modes are observed with high s/n
- Analysis of frequencies use at least 72 day spans to achieve very accurate frequencies. SOHO/MDI has 73 such sets, SDO/HMI 22.

mHz

FIG. 1.—The sound speed in the Sun as inferred by Christensen-Dalsgaard et al. (1985) (*solid curve*); the dashed curve shows the sound speed in a standard solar model for comparison. The inset shows in greater detail the inferred sound speed near the base of the convection zone.

From JCD, Note the kink at 0.713 – this is the base of the convection zone

Helioseismic Inversions

- Having a collection of mode frequencies does not directly give us details of the solar interior.
- The analysis process is one of iterating from a "forward problem" of computing frequencies from a solar model then constructing localized kernels to be used to estimate deviations from the model based on differences between model frequencies and observed frequencies.
- Using these kernels and the observed frequencies then is an "inverse problem" to infer the actual physical properties from the observations.
- See e.g. "Inversion methods in helioseismology and solar tomography" by A. G. Kosovichev

Journal of Computational and Applied Mathematics, Volume 109, Issues 1–2, 30 September 1999, Pages 1–39. http://www.sciencedirect.com/science/article/pii/S0377042799001521

Solar Structure Variation from Models

Sound speed difference from best model Peak at base of convection zone is about 0.2%

Red is faster, blue is slower than model

Observed Internal Rotation

Radiative zone rotates as solid body, Tachocline has shear that varies with latitude, Differential rotation in convection zone, Near surface shear layer

Observed Internal Rotation

By measuring thousands of mode frequencies we can also infer the rotation speed inside the Sun. Red is faster (26 days) and blue is slower (35 days).

Variations from smooth differential rotation

Alternating fast and slow bands, migrate to equator over sunspot cycle. Known as "zonal flows" or "torsional oscillation". Speeds of a few m/s on top of 2 km/s equatorial rotation. From SOHO/MDI

Zonal Flows aka Torsional Oscillation

Rotation rate residuals, MDI+HMI on left, GONG on right.

Depth of 0.99 Rsun.

Note difference in amplitude of high latitude branch in the present cycle. May be related to weak polar field.

R. Howe et al. 2013 ApJ 767 L20

Meridional Flow Cycle 23 and rising phase of cycle 24

Results for Ring diagram analysis with OLA and RLS inversions.

Meridional Flow vs Time, another method

North-South travel time differences obtained from GONG spherical harmonic time series. Blue color corresponds to the flow propagating to the south and red one to the north. At high latitudes some B-angle related artifacts are visible. Approximately lower turning point of the waves is about 0.91R (Kholikov et al., in preparation)

http://www.noao.edu/noao/staff/irenegh/meridional_web/meridional.html

Meridional flow, Now What?

Meridional flow, ...

Meridional flow, Maybe.

New Data

Old idea

Time-Distance Helioseismology Example

Waves going in all directions are reflected at each point on the surface.

Cross-correlations of the time series observed at pairs of points (A,B) reveal the integrated travel-time along the interior path that "connects" A with B.

Differences between the $A \rightarrow B$ and $B \rightarrow A$ directions arise from bulk motion along the path.

Analyses of travel-time maps provide maps of flows and temperatures beneath the surface.

Time Distance Diagram

http://solarphysics.livingreviews.org/open?pubNo=lrsp-2005-6&page=articlesu12.html

Giles, P. Dissertation, 1999

View of a Sunspot's Internal Structure

Sunspot data from MDI High Resolution, 18 June 1998

Animation showing the flows we found. These motions probably hold the spot together.

Ring Diagram Analysis for Local Helioseismology

Slices at constant $\boldsymbol{\omega}$

Typically 5, 15, 30 degree regions are used, tiling entire disk each 8 hours

Basu, Antia, and Tripathy

THE ASTROPHYSICAL JOURNAL, 512:458–470, 1999 February 10

Solar Sub-Surface Weather – From Ring Diagrams

Synoptic maps of fluctuating flows for depth 7Mm and 14Mm for Carrington Rotation 1975. The magnetic field intensity and polarity are indicated by red and green in the underlaying synoptic magnetogram.

Inflows at superficial layers, outflows at deeper depth

Haber, D. A., Hindman, B. W., Toomre, J. and Thompson M. J., 2004, Solar Physics

Local H-S Extends to the Backside

Farside sunspot detection with holographic local helioseismic method. The average phase of waves coming from a point are compared to that of waves leaving the front side, all shifted for average travel time. Whole Earth Sunny-side and far side

Whole Sun Earth-side and far side

With helioseismology we can "see" the back side of the Sun

Deep detection of emerging active regions

A. 60Mm deep phase perturbation, B. Surface magnetic field at time of A.C. Magnetic field after 2 days. D. Perturbation index and magnetic field vs time

Movie of event from 2003

Result from Stathis Ilonidis et al. ,Science, 19 August 2011 Data from SOHO/MDI

Another example from Feb 2011 event seen with SDO/HMI

Local HS - Successes and Prospects

- Quiet Sun seems to give robust results with all 3 methods giving similar results for near surface features.
 - Holography seems to see only features very near surface.
 - Rings limited depth
 - Time-distance can probe entire interior
 - Supergranulation, zonal flows, meridional flows in reasonable agreement.
- Active Sun So far all measurements made in or near magnetic fields are suspect.
 - We need to learn how to do inversions in magnetic regions and near them.
 - Center-limb time-distance bias effect not understood
 - Deep detection not understood.
 - There are research opportunities!!!

Comparison between results from different techniques

Comparison of two different local helioseismic methods used to infer wave speed perturbations below AR 9787. The red curve shows the averaged ring-diagram results, the solid blue curve shows the time-distance result, after averaging over the same area used for ring-diagram analysis.

We do not know how to do inversions where magnetic fields have perturbed the atmospheric structure.

Gizon, L., et al. 2009, Space Science Reviews, 144

Problem for seismology – acoustic waves rising into magnetic regions will be converted to MHD waves. The phase of reflected acoustic waves will be altered.

Numerical simulations of conversion to Alfven waves in sunspots Elena Khomenko, Paul Cally The future for helioseismology as a tool to study the solar interior is bright.

Wait for it, or better, join the effort!

Disk passage of Feb 2011 Active Region

Filament Eruption

HMI Instrument Overview – Optical Path

Optical

<u>Characteristics:</u> Focal Length: 495 cm Focal Ration: f/35.2 Final Image Scale: 24µm/arc-sec <u>Camera Characteristics:</u> Format: 4096x4096 pixels Pixels: 12µ Exposure: 150ms Read time: 2-sec **Filter Characteristics:**

Central Wave Length: 613.7 nm Bandwidth: 0.0076 nm Tunable Range: 0.05 nm Free Spectral Range: 0.0688 nm

HMI Optics Package

SDO/HMI – Inside the Box

HMI obtains 32 16-megapixel images each minute

🦛 SDO

SDO

A few days before launch

SDO launch

10 Feb 2010

