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Time series display random regime switching between laminar periods of small-amplitude

fluctuations and bursty periods of large-amplitude fluctuations

Probability distribution functions (PDF) display a non-Gaussian shape (broad-tail and sharp peak)
due to an excess of large- and small-amplitude fluctuations at small scales

Power spectra display a power-law behavior indicative of multiscale interactions

Images display localized regions of patchness (multifractality) associated with coherent structures



A brief history.of space plasma-physics
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Irving Langmuir (1881-1957)
Langmuir waves - plasma




Langmuir discussed plasma oscillations for the first
time in 1928 (Langmuir, 1928; Langmuir and Tonks,
1929). In fact, he found that the characteristic behavior
of the jelly-like movement of the group of charged par-
ticles was similar to that of blood plasma and this led
him to use the name plasm.a Plasma frequency is also

Plasma Oscillations The plasma electron oscillations
arise as a consequence of the property of the plasma to
try to remain neutral. If the electrons in a plasma are
displaced from a uniform background of ions, electric
fields will be built up in such a direction so as to restore
the neutrality of the plasma by pulling the electrons
back to their original position. Because of their inertia,
the electrons will overshoot and oscillate around their
equilibrium positions with a characteristic frequency
namely the radian plasma frequency

2y 1/2
wp = (4”""c ) . (10.5)
o
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Fig. 10.2. Jovian plasma oscillations: Frequency-time diagram
of the electron plasma oscillations detected in Jupiter’s magne-
tosphere by the spacecraft Voyager. The plasma probe picked
up the signals on 1 March 1979, which when plotted on
the frequency-time graph, showed constant frequency oscilla-
tions. A frequency of 6000 Hz was calculated to be the plasma
frequency in the vicinity of the spacecraft. After the 33 seconds
mark, plasma turbulence features are seen




10
CTR
Experiments
e ™~
o J’ 1
Glow \ Y.
discharges -
= e \
4| Flames /
.E. 10~ 7 TN Solar
2 J \ , corona
= { s ‘1
S - B
S =~ = _lonosphere
-E 0" N ||
i 1 L
/
N L
Interplanetary
2 | T TN
10 ! | Earth’s Magnetosphere
— — [ - ff— \
Interstell .
ar ~— \ o _,f
= ) | |
10 2 4 k 6 8
10 10 10 10

Electron Temperature { 'K)

Fig.10.1. Plasma parameters for a variety of natural plas-
mas in terms of electron density and temperature. For
comparison, laboratory plasmas used for controlled
thermonuclear reaction (CTR) experiments are also
shown



Guglielmo Marconi (1874-1937)
radio wave propagation via ionosphere




For plasma with £(w) given by (10.86) the disper-
sion relation for transverse waves can be written as from
(10.92) as

w® =’k + w} . (10.94)

Note that v, for a light wave in a plasma is greater than
the velocity of light. However,

V_aw < C
& 2k vem O°

At w = wy, kK = 0, which means that electromagnetic
wave has a cut-off frequency at w = w in a plasma. For
w < wp, k becomes imaginary and the wave is damped
with a characteristic length 1/|k| (Fig. 10.6).
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Fig.10.6. Dispersion relation of electromagnetic waves in a cold,
unmagnetized plasma



Alfvén, Nature (1942): Existence of Electromagnetic-Hydrodynamic Waves



Existence of
Electromagnetic-Hydrodynamic Waves

Ir a conducting hhguid 15 placed in a constant rag-
netic field, every motion of the liguid gives rise to
an BE.AM.F. which produces electric currents.  (hwings
to the magnetic field, these currents mive mechanical
forces which changoe the state of motion of the hopaud,

Thus a kind of ecombined electromagnetic-liviro-

dynamic wave is produced which, so far a= [ know,
has az vet attMeted nn attontion R -
onsider the simple ecase when & — w3 — 1 and
the imposed constant magnetic field H, 1z homo-
geneous and parallel to the z-axis. In order to study
a plane wave we assume that all variables depend
upon the time ¢ and z only. If the velocity @ is par-
ﬂﬂﬂ]_'ﬁﬂ the s-axis, the current ¢ is pa,rajlel to the
AN ?nd produces a variable magnetic field H’ in
the r-direction. By elementary calculation we obiain
o = drnd 2F7
| dz® He® di*
which means a wave in the direction of the z-axis
with the velocity

H,

F =
o




Alfvén Waves At the very low frequency w <« wg, the
motion of ions cannot be neglected. In this case, we can
show that

dmpc®
fy = n}{:1+l;, (10.104)
By
where p = ngm;. This gives
o S
s, (10.105)
¢ W

As v} <« c*, this gives the Alfvén wave with velocity
vy = By/(4mp)"/%. This is a very important result, be-

= WAwE

k
L - wave

Fig. 10.7. Dispersion relation of & and I electromagnetic waves
in magnetized plasma



Langmuirwaves, instabilities, chaos & turbulence

in space plasmas
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NONLINEAR GENERATION OF THE FUNDAMENTAL RADIATION OF INTERPLANETARY
TYPE III RADIO BURSTS

ABRAHAM C.-L. CHIAN AND MARIA V. ALVES
Institute for Space Research-INPE, Séio José dos Campos—SP, Brazil
Received 1988 February 18 : accepted 1988 March 30

ABSTRACT

A new generation mechanism of interplanetary type Il radio bursts at the fundamental electron plasma
frequency is discussed. It is shown that the ¢lectromagnetic oscillating two-stream instability, driven by two
oppositely propagating Langmuir waves, can account for the experimental observations. In particular, the
major difficulties encountered by the previously considered electromagnetic decay instability are removed.
Subject headings: plasmas — Sun: radio radiation — Sun: solar wind
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Abstract. Results from plasma wave experiments in spacecraft give support to nonlinear interactions involving Langmuir
waves, electromagnetic waves and ion-acoustic waves in association with type III solar radio bursts. In this paper we present
a theory of the fundamental plasma emission of type-III solar radio bursts. Starting from the generalized Zakharov equations,
considering the pump wave as a pair of oppositely propagating Langmuir waves with different amplitudes, and the excitation of
electromagnetic and induced Langmuir waves, we obtain a general dispersion relation for the coupled waves. We numerically
solve the general dispersion relation using the pump wave amplitude and plasma parameters as observed in the interplanetary
medium. We compare our results with previous models. We find that the stability properties depend on the pump wave numbers
and on the ratio of wave amplitude between the forward and backward pump wave. The inclusion of a second pump wave
allows the simultaneous generation of up and down converted electromagnetic waves. The presence of a second pump with
different amplitude from the first one brings a region of convective instability not present when amplitudes are the same.



Langmuir waves & turbulence:
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Observational evidence of nonlinear wave-wave interactions:
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Observational evidence of nonlinear coupling of

Langmuir waves and ion-acoustic waves in a type-I1I event
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Generalized Zakharov equation

(82 — vedy + PV x (Vx) —7e0BV (V) + wp) B = —

2
(af—uiat—vfw)n:% V<E >

n :low - frequency ion density fluctuations



L—=L +T"+S (Abalde, Alves & Chian, 1998; Barta & Karlicky, 2000)

Twelve-wave couplings: (Rizzato & Chian, 1992; Alves et al. 2002)




One-pump hybrid parametric instability

A traveling Langmuir pump wave Eg(wo., Ko) with disper-
sion relation w3 = wzz, + vevi;, k5 can excite two types of four-
wave hybrid modulational instabilities (Akimoto 1988: Chian
& Abalde 1997): Lo — X7+ L~ + S and Lo — 1I"— + L7+ 5.
respectively. provided the following frequency and wave-vector
matching conditions are fulfilled

w, = wo — w’, wg = wo + w, kI =ko =k. (3)

where «w and Kk are the frequency and wave vector of the low-
frequency ion mode. respectively. &« = T or L. with |kF| <=
(|kol|. | k7 ) and |k| = |Kkol|. the asterisk denotes the complex
conjugate. The wave-vector kinematics for Lo — 77" + L~ + .5
is 1llustrated in Fig. 1. In this paper. we shall focus on the process

-k KT

Fig. 1. Geometry of wave-vector matching conditions for the hybrid
modulational instability Lo — X7 + .= + .5



Nonlinear dispersion relation for one-pump hybrid parametric instability

The nonlinear dispersion relation for the hybrid modula-
tional instability Lo — 77 + L= + S can be derived from a
Fourier analysis of Egs. (1) and (2). making use of the phase-
matching conditions (3). which yields

Ds(w,.K) = All/Di(w ki) + 1 /D7 " (w .k, (D

where A = e2 k2 |Eo|2/(memz), Ds(w.K) = w? +ivsw — vSk2
D7 (w™, kT) = (wo + w)? +ivp(wo +w) — 2 (Ko + k) — w2, and
D, (w™,Kky) = (wo — w*) +ivi(wo — w*) — vevy, (Ko — k)2 —
wzz,. We assume K+ perpendicular to Kg. Making the resonant ap-
proximation for the high-frequency electromagnetic and LLang-
muir waves., Eq. (4) becomes

pnTks Wo
a

w? + 2rsw — /_LTICO =

1 1 )
w + %kg — %(c/'vth)zk% + i w — —ko +ivyp |
where g = m./m;. @ = (y.I. + T/ T.. Wy =

eol“0|?/(2noKT.) is a dimensionless parameter that mea-
sures the energy density of the Langmuir pump wave. Eg =
1/2 Fpexp i(Ko -r — wot) + c.c.. Ap = [eoI(]fg/('noez)]1/2
is the Debye length and we have introduced the normalizations
w/fw, — wand kKA p — K.



Growth rate of one-pump hybrid parametric instability
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Wave-vector kinematics for two-pump hybrid parametric instability

e \ T
- +
ko~ K, *, o - K -k, Ky - k.
Ko- K
Fig. 1. Wave-vector knematics for our model: k;(_) are related to the
pump Langmuir waves, k() to ion acoustic waves, k; &) _ ki) are the
electrostatic (oblique to kg ) or electromagnetic (L to k;(')) Stokes

modes and k(’;(') + ky(2) are the electrostatic (oblique to kg(')) or elec-
tromagnetic (L to k; ) anti-Stokes modes.



Nonlinear dispersion relation for two-pump hybrid parametric instability
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Growth rate of two-pump hybrid parametric instability
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Fig. 12. Numerical solutions for the present model with different val-
ues of r: a) and b) show the real part of the solution and b) and d) the
growth rates, with ko = 107*, within the limit ko < (1/3)W,’?: a) and
c¢) refers to r = 0.5, and b) and d) to » = 0.95.

r: ratio of two pump amplitudes



Flow diagram for generation of radio emissions
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Generation of auroral whistler-mode radiation via nonlinear
coupling of Langmuir waves and Alfvén waves
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Abstract. A novel generation mechanism of nonthermal
electromagnetic radiation near the electron plasma fre-
quency by Langmuir waves in space and astrophysical
plasmas is proposed. It is shown that large-amplitude
Langmuir waves may nonlinearly interact with Alfvén
waves Lo generate electromagnetic waves. This radiation
mechanism may explain the excitation of whistler-mode
emission in the Earth’s and Jupiter’s auroral acceleration
regions where the electron plasma frequency is smaller
than the electron cyclotron frequency. Observational evi-

dence in support of the proposed emission mechanism is
discussed.

Key words: plasmas-instabilities-radiation mechanisms:
misc.— Barth-Planets and satellites: general

it becomes quasi-electrostatic and reduces to the lower-
hybrid mode. Auroral whistler-mode hiss propagates both
downward and upward along the Earth’s magnetic field
lines. At low altitudes, less than 1000 km, the radiation
usually travels downward and is correlated with downgo-
ing 100 eV to 10 keV electron beams. At high altitudes,
more than 10,000 km, the radiation usually travels upward
and is correlated with upgoing ~ 50 eV electron beams.
At intermediate altitudes, propagation at both directions
oceur. The bursts of short duration upgoing low-altitude
auroral whistler waves are sometimes called saucers (Gur-
nett & Frank 1972). High-frequency leaked AKR (Auroral
Kilometric Radiation) in the whistler mode has been de-
tected by satellite, rocket and ground receivers (Miyaoka
& Oya 1984; Morioka & Oya 1985; Oya et al. 1985; Ben-
son & Wong 1987; Benson et al. 1988); it may provide the
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Nonlinear excitation of kKinetic Alfvén waves and whistler waves
by electron beam-driven Langmuir waves in the solar corona
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Abstract. We study a new nonlinesr excitafion mechanism of kinetic Alfeén waves (FLAWs) and whistler waves (Ws) by elec-
tron beam-driven Lansmnir waves (Ls). The generation conditions for the parametric decay instability L & W + EAW are
determined and the growth rate is calculated. We show that the resonant pairs of EAW: and whistler waves are nonlinearly
coupled to the pump Langmuir waves and their smplimdes nndergo exponential growth from the thermal level The perpen-
dicular dispersicn of EAW:s stronghy increases the coupling due to the nonlinear current parallel fo the ambient maznetic fisld
Our stody suggests that the nonlinear coupling of Langnmir wave energy into AW snd whistlers can provide an efficient sink
for weakly dispersive Lansmuir waves excited by fast electron beames in the solar corona when the elecoon plasma frequency
is lower than the electron gyrofrequency. This condition can be satisfied in the low-dencsity magnetc filaments that are rooted
in the depleted patches at the coronal base and extend to the hich coroma. At the same time, the Laneromir-driven EAWSs and
whistlers give mse to scatterning and'or thin stmactores of radio emdssion penetrating through or generated in these regions.
Since the decay into sunward propagating KAWS: is soongest, the nonlinearly driven EAWS can be easily distingmished from
the waves gensrated at the coronal base and propagating away from the Sun. Our results may be nsed in the analysis of solar
radio data and for remote probing of the coronal plasma, magnetc fields, and waves.

Key words. Sun: corona — waves — instabilities



Auroral LAW (Langmuir-whistler-Alfven) events
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Examples of generation of radio waves by Langmuir waves
via nonlinear 3-wave interactions
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Abstract

A dynamical theory of nonlinear three-wave interactions involving Langmuir, whistler and Alfvén waves in the planetary
magnetospheres is developed. By assuming linear growth for the Langmuir wave and linear damping for both whistler and
Alfvén waves, the wave triplet is shown to evolve temporarily from order to chaos via either the period doubling route or the
type-I Pomeau-Manneville intermittency route. Numerical solutions of this dynamical system are presented, showing the time
series of the wave amplitude and the corresponding power spectra. The characterization of orderly and chaotic states is
performed by plotting the Poincaré maps and calculating the largest Lyapunov exponent. The relevance of this theory for
observation of chaos in the time series of nonthermal planetary radio emissions is discussed. © 1999 Elsevier Science Ltd. All
rights reserved.




Temporal Dynamics of Three-Wave Coupling

A, : the complex amplitudes of the envelope wave fields
0 : the frequency mismatch parameter
v, : the growth/damping parameters




Bifurcation diagram
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Fig. I Bifurcation diagram |4 ,{v)| for 5=2. Type-I Pomeau-Manneville intermittency occurs at v~ 1381 (4), 15.21 (B), 16.82 (C), 20.64 (D)
and 29.56 (E).






Pomeau-Manneville intermittency & Crisis-induced intermittency
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Fig. 3. Time series of |4w| as a function of t for the type-1 Pomeau-
Manneville intermittency route to chaos for: (a) v =29.57, (b) v =29.56, Fig. 4. Time series of |4w| as a function of t for the crsis-induced
and (c) v=29.55. intermittency for: (a) v = 33.23, (b) v = 33.24, and (c) v = 33.25.



Observational evidence of chaos, complexity, fractals and
nonlinearity in solar radio bursts:

during the June 15, 1991 flare
(Meszarosova et al., 2000)
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Power-law behavior in the power spectrum of
Alfvén intermittency in high-speed solar wind

Power spectra of outward
(solid lines) and 1nward
(dotted lines) propagating
Alfvénic fluctuations 1n
high-speed solar wind,
indicating power-law :
behavior 106 103 104 103 132

Freguency (Hz]

e Helios spacecraft (Marsch & Tu, 1990)






Corotating Interaction Region

fast
stream

Schematic of formation of corotating interaction regions (CIRs) during the
descending phase of solar cycle. The composition of the plasma and magnetic
field fluctuations are also shown. FS denotes fast shock; IF denotes interface;

RS denotes reverse shock.




HILDCAAs (High-Intensity Long-Duration Continuous Auroral Activities) events:

BT T i et al /o of . heric and Solar- Terrestrial Physics 72 (2011) 1633177
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Derivative nonlinear Schrodinger equation

b + O, (|b]?b) + i(p + in)O2b = S (x,t)

and ﬁzc%/ci- The external forcing S(bH, x, 1)=— A exp(Zkg)
1s a monochromatic left-hand circularly polarized wave with
a wave phase ¢pg=—=—x — V7, where V 1s a constant wave velocity,
A 1s the driver amplitude, and k£ 1s the driver wave number.

Low-dimensional model of nonlinear Alfvén waves

The first integral of Eq. (1) reduces to a system
of ordinary differential equations by seeking station-

ary wave solutions with & = b(¢), giving
. . OH
by — b, = b + a cos @, (2)
. . O H
b, +vb, = _8by + asin &, (3)

where H = (b? — 1)2/4 — (0\/2)(b — )2, ¥ denotes
a unit vector in the y direction. the overdot denotes
derivative with respect to the phase wariable
T = —ab%gb/,u,, the normalized dissipation param-
ceter v = 1/, b — b/bg (where bg is a complex
integration constant. for simplicity, we assuime in
this paper that bg is real). b = (b,.b.), # = Q¢
Q= —pk/abg. a = A/abgk, N\ = —1 + V/abi. We

assuime J < 1. hence o = 0.

Refs: Hada et al., PF 1990; Chian et al., NPG 2007; Rempel et al. IJBC 2008



Poincare map

To simplify the analysis of a nonlinear trajectory (orbit or flow) of a com-
plex system, it is often convenient to reduce a flow in the state space,
namely, the numerical solution of equation (2.14), to a discrete time map
by the Poincaré surface of section method (Ott 1993). In this mono-
graph, we define the Poincaré surface of section (Poincaré map) by

P:x(t)—ax(t+1T), (2.18)

where 1" = 27 /w is the driver period. Figure 2.3 is an illustration of a
state-space trajectory and the Poincaré map.

S

. ‘ /

T=2m/®

Fig. 3. State-space trajectory and Poincaré map. An illustration of a state-space trajectory and the Poincaré map, 7' is the driver period
and o is the driver frequency.
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Bifurcation diagram & Maximum Lyapunov exponent
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Fig. 1. Limit point diagram and maximum ILyapunowv exponent:

global view. (a) Limit point diagram_ H- as a function of the driver

amplitude «: (b)) maximum Liyapunowv exponent 2.max as a function

of a. The arrow indicates a period-3 periodic window. v=—0.02,
——1_A=—1/4_ ja—1/2_



Periodic window:




Alfvén intermittency induced by crisis
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LETTERS

A magnetic reconnection X-line extending more
than 390 Earth radii in the solar wind

T.D. Phan', J. T. Gosling”, M. S. Davis’, R. M. Skoug", M. Qieroset’, R. P. Lin", R. P. Lepping®, D. J. McComas",

C. W. Smith", H. Reme’ & A. Balogh®™

M*neﬁctmﬁonin.cmm converts magnetic
into particle energy. a process that is important in many
lm‘.spm*’.ndm-dm“ It is not known
whether reconnection is & by & pr = that

ded region in space or whether it is patchy

&rﬂlsmw.bcre f-l‘ the po-:l-’.l&y that reconnection is

patchw XK-dine (tlne ﬁne doq

wlndn oppositely directed magnetic ficld lines r
Earth

of
reconnection I a current sheet embedded in the solar wind flow,
where the teoonnect:on X dine extended at least 3”3: {or

a fu d property
tion. Ow obscrvation s also wvt—l.su:pr-xnﬂ; th‘mtnn
oy iriven by

can operate I a quas ¥
the extern al HSow.

Until recently, in sine cbservations of reconnection in space
plamas were made almaost exclusively inthe Earths magnetasphere,
in current sheets formed by the intaracion between the salar wind
and the geomagnetic field. Such current sheets have finites extents,
and their bo conditions (determined by the solar wind
magnettc ficld) often change raptd)y It = generzlly difficalt to

hlish the p we of an tion X-line in the
m‘naoq)hae from in sifuw measurements since that requires the
presena of widdy separatsed et ing the
tion events. T he chances of such m\)mm == excedingly s'ndl
because the spacecaaft are selkd idezlly p d for such obser-
vations and becuse of the variable boundery conditions . The single
event reported where two spaceaaft (sepamted by 3Ry) detected the
m=me redmmnecton evere & the magnempause only allowed the
deduction that the X-line was =2 least 3R, kng ™. Remote obser-
vations of proton awroras' and ionospheric conveaion ' have hined
at the presence of 2 magnetopause XN-line up 1 90Ry in length but
that has not yet been confirmed by o sitw cbservations.

T he reaeent discovery of reconnecion exhaustsin the solar wind “**
inroduces 2 new hboramry where reconnection <an be Irnitstigatd
by in sifuw measurements. T he solar wind cton <
often associated with 1 »L tary oo 'mge)ecttons.a:dﬂxc
magnetic fickd oriemations on the two sides of the currentsheets are

(14 Cy. .52

Wired

PR 21 5. 163
e
Figawe 1 | m.lhm“dhs—c“-ﬂ-uﬁ-“
=90R cth X-lane n the solar wind., ReconmecSon in
the currernt sheet (in bloc ) ocowrs at the X dine between magnesc ficld
lines with large amtiparalle]l components £, , and B, . the resullting
bi-direcaional plasma jets (confined 10 the reconnection exhaasts) can be
obmerved far from the X-line The ACE, (Juster and Wind spacecraft

Sons are shown in units of Eanth radios (Rz) and in geocemtric solar
ecliptic (GSE) coordimates with the x-axis pointing from Earth 10 San, the
Paxis pod nting towards dusk and the aws paralice] 1o the adipaic paole AR
three spacecraft were radaivady dose to the ecliptic plane (in yllow). ACE
was 222 R upsrean o fClaster whille Wind was 331 R s davanward of Claster
Adso shown is the LM N cwr remt shest coordinate system, with N adong the
sheet normal M along the X line direction and I along the

ficld directon The current sheet normal (071X,

and paralld
OSO% —O37£)in GSE_is tilied 45° rcddative 1o the Sun—Earth line The X -line
s ortented along (0472, —O0.79¢9,. —0 392 ) in GSE_ The thicksolid red lne is
the (350K ;) portion of the X dine whose offec s obscrved by the ghree
spacecraft The solid orange ines & the sp 1 trajoctior y relaive to
the solar wind, with the red lne portion marking the inerseaions of the
exhanst with the spacecraft The total reconnected b flax

(= VB, Iy orV, B, [ ..)isdtemined by the inflow vwSocity.
Vi-the strength of the anti. components, £, and the lengh of
the X-lne, L x g The angle of the diver ging exhaus s s cxaggerated for
Suasvaton The acaual calculated angle s —4% By, s the magnetic ficld

all e, thee - Rrse

Ref: Gosling+ JGR 2005; Phan+ Nature (2006)



Evidence of magnetic reconnection in the solar wind
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Evidence of magnetic reconnection exhaust in the solar wind

Effective S/C Trajectory

Separatrix
Layer

Reconnection
Exhaust

Reconnection

Separatrix
Layer

Figure 2. Highly idealized planar projection of a slightly asymmetric recomnmnection exhaust
convecting with the mnearly radial (from the Sun) solar wind flow. The sharp field line kink
produced by recommection propagates as a pair of Alfvénic disturbances parallel and antiparallel
to a reconnected field line into the plasma on opposite sides of the reconnecting current sheet. As
the Alfveénic disturbances propagate they accelerate the plasmas they intercept into the exhaust
and away from the reconmnection site, thus extracting energy from the reconmnecting current
sheet. The dashed lines A1 and A2, which pass through the kink pairs on successive reconnected
field lines, mark the pair of current sheets (back-to-back rotational discontinuities or slow mode
waves) that result from this process and that bound the reconmection exhaust. In practice, the
reconnecting fields almost always also have substantial out-of-plane components (parallel to
the reconnection X-line). The dash-dot line indicates the projection of an effective spacecraft
trajectory through the exhaust. The spacecraft would observe anti-correlated changes in V and
B as it enters the exhaust and correlated change in V and B as it exits the exhaust since Alfvenic
disturbances propagating parallel (antiparallel) to B produce anticorrelated (correlated) changes
in V and B, respectively. Adapted from Gosling et al. (2005a).

Ref: Gosling et al., JGR (2005, 2007): Petschek-type RX at front/rear edges of ICMEs



Magnetic reconnection at Magnetic Cloud Boundary Layers

WEI ET AL: DENTIFICATION OF THE MAGNETIC CLOUD BOUNDARY LAYERS SSH
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Ref: Wei et al., JGR (2003): WIND data of ICME of 10/18/1998
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DETECTION OF CURRENT SHEETS AND MAGNETIC RECONNECTIONS AT THE TURBULENT
LEADING EDGE OF AN INTERPLANETARY CORONAL MASS EJECTION
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ABSTRACT

The relation between current sheets, turbulence, and magnetic reconnections at the leading edge of an interplanetary
coronal mass ejection detected by four Cluster spacecraft on 2005 January 21 is studied. We report the observational
evidence of two magnetically reconnected current sheets in the vicinity of a front magnetic cloud boundary layer
with the following characteristics: (1) a Kolmogorov power spectrum in the inertial subrange of the magnetic
turbulence, (2) the scaling exponent of structure functions of magnetic fuctuations exhibiting multi-fractal scaling
predicted by the She-Leveque magnetohydrodynamic model, and (3) bifurcated current sheets with the current
density computed by both single-spacecraft and multi-spacecraft techniques.

Key words: magnetic reconnection — plasmas — shock waves — solar wind - Sun: coronal mass ejections (CMEs) -
turbulence



(AR 10720)

Left panel shows a MDI unage on 19 January 2005, An X<¢lass solar flare occumed ar
08:22 UT within active region AR 10720, wisible in the upper right-hand comer of the
Aiddle panel which shows a LASCO C2 mmage of the CME on 19 January 2005, Eigli
panel shows a LASCO C2 image of the CME on 20 January 2005

Refs: Chian & Murioz ApJL, 2011
Miranda, Chian, et al., AU 286, 2010
Munoz, Chian, et al., IAU 286, 2010



ICME event of 21-22 January 2005:
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Figure 9 Possible interpretation of the global geometry of the ICME observed on 21 — 22 Janvary 2005 near
L1. The ICME shock front. sheath and ejecta are projected on (a) the noon —midnight meridional plane and
(b} the ecliptic plane (in the GSE Canesian coordinate system), with perspective rendered in dark greyv. Scales
in the riGSE direction are shrinking {with time). Wind. ACE. Cluster and Geovrail are indicated by circles filled
in black, red. green and blue, respectively. The yvellow and blue grey areas represent the sheath and the sjecta.
respectively. Discontinuity normmals are indicated with blue arrows. IMF orientations observed or inferred at
different locations in the ejecta are indicated with plain black arrows. A curved dashed black arrow represents
the main axis of the interplanetary flux rope. with the stronger inner helicoidal fields indicated in blue. The
counterclockwise rotation of the corresponding coronal Aux rope axis is indicated by a blue rounded arromw

in (b

Ref: Foullon et al., SP (2007)



Detection of current sheets & Kolmogorov magnetic turbulence
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* Current sheets detected by the technique of Li, ApJL (2008)



Applying the extended self-similarity (ESS) technique of Benzi et al.
(PRE 1993) to compute the scaling exponent:

¢ (p) =~ alp)a), Sp(r) ~ [S3(z)]<C (p)
She-Leveque (PRL1994) model for the universality of the scaling
exponent of structure function (of order p), for a Kolmogorov -5/3
power spectrum, was extended by Muller, Biskamp & Grappin (PRE
2003) for sheetlike dissipative structures in a well-developed
anisotropic MHD turbulence, where g 1s an adjustable parameter:

cpy = L2+ (1 )P/g
c(p) = — (=
g- £




Magnetic turbulence:
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*  Good agreement with the multi-fractal scaling predicted by the She-Leveque model of
fully-developed MHD turbulence developed by Muller, Biskamp & Grappin (PRE 2003)



Magnetic reconnection.
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 [BL, VL] of SBI (SB2) present evidence of anti-correlated (correlated)
and correlated (anti-correlated) Alfvén waves: minminum variance analysis



Magnetic reconnection:
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Figure 3. Detection of magnetic reconnections at the leading edge of ICME associated with the current sheets SB1 and SB2 (magenta). |B| (nT) is the modulus of
magnetic field (enlargement of Figure 1(b)); [V| (km s~') is the modulus of the observed plasma velocity (black) and the plasma velocity (orange) predicted by the
magnetic reconnection theory of Sonnerup et al. (1981); |J| (nA m™2) is the modulus of current density computed by the multi-spacecraft curlometer technique of
Dunlop et al. (2002).

* V computed by the magnetic reconnection theory of Sonnerup et al. (1981)

» J computed by the curlometer technique using multi-spacecraft Cluster data



Magnetic reconnection:

I
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Figure 5. Dvirect evidence of a bifurcated current sheet 5B 1| measured by Clasne r-
J.ia) Two-step temporal variation of &y with a plateau in the middle of the
current sheet. (b} Sy calculated from 8y showing double peaks at both edges of

the current sheet.

18:39:15

JM computed from BL using Ampere’s Law & Taylor s hypothesis => Bifurcated current sheets




Ground observation of the ICME of 21-22 January 2005

Ground magnetometer data at Vassouras (VSS), Brazil
(Geomagnetic latitude: ~ l9°)
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Figure 6. (a) From top to bottom: time series of |B| (nT) measured by ACE for the ICME
event of 21-22 January 2005; modulus of the Earth’s geomagnetic field |B| (nT) measured by a
ground magnetometer at Vassouras, Brazil; time series of Pe3 (10-45 s), Ped (45-150 s) and Pcb
(150-1000 s) micropulsations. (b) Kurtosis (upper panel) and the phase coherence index (lower
panel) of |B| measured by ACE and the ground magnetometer at VSS as a function of time
scale 7.

Ref: Miranda, Chian+, IAU 264 (2010); Du et al. JGR (2008)



Upstream/downstream of shock ahead of an erupting coronal flux rope

~
~
mn,

Fig. 9. Schematic illustration of thhe 3 Novermber 2010 sraptive srent
observations cormbined wwith their interpretation in the frame of the
upstrearm-dovwnstrearn scenario (see text), VWiew is fromthe heliographic
northh pole. Direction to the Earth is rmarked by a thick black arrows.
Notations: (1) hypothetical shock wawve., (23 LEFC source of the tmrpe IT
burst, (3) its HEFEC source, (4) turbulent magnastosheath., (5 warm (X =
1—2 ™WIKD) plasma rirm and (&) its LE, (7)) hot (¥ = 10 MWMK) srapting
flux ropes or plasma blob if observed from the Earth., (8) photosphere.
Thin black arrovws shovww directions of thhe enmaptive plasmmas, shock wa-wre,
LEFC and HFC sources motion. Lengths of the arrovws are proportional
to thhe corresponding welocities of motion. Lewvels of constant andis-
turbed background slectron plasrna concentration, assurming thhe nataral
ocravitational stratification. are rmarked by black dashed arc-lines. and

My = o = 3.

Refs: Zimovets, Vilmer, Chian+, A&A 2012



SDO AIA_2 211 3- Nov 2010 12 14:00.620 UT SDO AIA_1 131 3-Nov- 2010 12:13:57.620 UT
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Fig. 2. Active area near the eastern limb of the Sun in the impulsive phase of the 3 November 2010 eruptive flare. AIA 211 A a)and 131 A b)
base-difference images are overlaid by the RHESSI 6—12 keV (12:13:54—12:14:14 UT; light green) and 25-50 keV (12:13:54-12:14:14 UT; red)
contours (20%, 40%, 60%, 30% of the peak flux), indicating locations of the flare soft and hard X-ray sources, respectively. AIA211 Abase image
was made at 12:00:02 UT and 131 A base image —at ~212:00:11 UT. Yellow ellipses are the NRH 445 MHz contours (70%, 80%, and 90% of the
peak flux), which indicate the location of the decimetric radio emission source at the same moment. The thick dashed yellow straight line indicates
a projection of the radius-vector passing through the centroid of the flare soft X-ray source onto the image plane.



LF type-II radio bursts ahead of an erupting coronal flux rope

12:115:10 $
. 298 Mz [
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Fiz. 6. Partial tirce ==quence of AJTASSTD 131, 211, and 1932 A base-difference mages in between 12:12:10 T and 12:16:20 TOT
of 2 INoveraber 2010. Overplotted are the iso-intensity conours (0%, 0%, 70%, &0%, and Q0% of the roaxiroura) of the LEC soums ob-
s=rved by NMRH atdiffersnt frequencies ata vicinity of trees of its first appearance (indicated in the upper left corner of the 416 131 ﬁ.irnages).
One-second inte grated NMRH d ata is used. The clossest A16 ircages in trce to the NRH ones are shosn (the tirce differmnce is less than eight seconds
in each cass). Solar lirab is depicted by the thick whie line. The r=d dashed straight line in all panels indicates a projection of the radius vector
passing thmough the X -ray flare onto the Innage plane. The A14's field of view isless than that of the MNRH.



LF/HF type-II radio bursts at the leading edge of an erupting coronal flux rope
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Fig.7. Composite base-difference images of the active area near the eastem limb of the Sun made by AIA in 131 A (turquoise) and 211 A (putple)
passbands at four different times of the 3 November 2010 event. These times are matked by dash-dotted vertical lines in Figs. 4 and 8, Green,
yellow, and red dashed parabolas on panels a), b) and ¢), respectively, indicate the approximated LE of eruptive plasma observed by AIA in
1A passband. The parabolas’ colors are consistent with the colorbar in Fig, 3. Solid lines of different colors are the NRH contours (95% of the
peak flux), which indicate locations of centroids of the type II burst sources at different frequencies (indicated within each panel) at appropriate
moments. All AIA and NRH images are matched within 5 s. Red dashed line in all panels indicates a projection of the radius-vector passing
through the X-ray flate onto the image plane.



Applications of plasma physics




Sun-Earth relation & Space weather

Earth's Magnelosphere
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component of MF

Gonzalez and Tsurutani, INPE/JPL
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An asymmetric solar wind termination shock
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THE ASTROSPHERE OF THE ASYMPTOTIC GIANT BRANCH STAR IRC+10216

RAGHVENDRA SAHAT AND CHRISTOPHER K. CHRONOPOULOS
Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109, USA: sahai@jpl.nasa.gov
Received 2009 December 7; accepted 2010 January 26; published 2010 February 17

ABSTRACT

We have discovered a very extended shock structure (i.e., with a diameter of about 24”) surrounding the well-known
carbon star IRC+10216 in ultraviolet images taken with the Galaxy Evolution Explorer satellite. We conclude that
this structure results from the interaction of IRC+10216’s molecular wind with the interstellar medium (ISM), as it
moves through the latter. All important structural features expected from theoretical models of such interactions are
identified: the termination shock, the astrosheath, the astropause, the bow shock, and an astrotail (with vortices).
The extent of the astropause provides new lower limits to the envelope age (69,000 years) and mass (1.4 M, for
a mass-loss rate of 2 x 107 M yr™"). From the termination-shock standoff distance, we find that IRC+10216 is
moving at a speed of about 291 km s (1em™ / nisp)"/ through the surrounding ISM.

Key words: circumstellar matter — dust: extinction — ISM: structure — stars: AGB and post-AGB - stars: individual
(IRC+10216) - stars: mass-loss
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Figure 1. (a) Composite (NUV (red) and FUV (green)) GALEX image of IRC+10216 (the circular field of view (FOV) has a diameter of 616 x 61/6); the NUV (FUV)
image was boxcar smoothed using a 3 x 3 (2 x 2) pixels box, and displayed using a linear (square-root) stretch. The location of the central star is indicated by a *;
the bright round red patches and streaks at the edges of the NUV image are due to bright stars which could not be removed, and detector edge artifacts. (b) The FUV
image (same FOV as in panel (a)), which is less affected by bright star residuals and artifacts, boxcar-smoothed using a 3 x 3 pixels box, and displayed using a linear
stretch (in false color), to clearly show the detailed structure of the astropause and its tail.
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The planetary—exoplanetary environment: A nonlinear perspective

Abraham C.-L. Chian™*, Maoan Han ", Rodrigo A. Miranda *, Chenggang Shu®,
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Abstract

A review of the fundamental physical processes in the planetary—exoplanctary environment 15 presented, with emphasis on nonlinear
phenomena. First, we discuss briefly the detection of exoplancts and search for radio emisions from exoplansts, Mext, we give an over-
view of the concepts of waves, instabilitics, chaos and turbukence in the planctary—exoplanstary environment based on our present
knowlkdge of the solar-terrestrial environment., We conclude by discussing cyclotron masers and chaos in nonthermal radio emissions
in the planetary—exoplanstary environment.

& 2E COSPAR. Published by Elsevier Ltd. All rights reserved.
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Star-planet relation: complex system




complex system

Discovery of a youngest nearby black hole SN 1979¢ in M100:
NASA’s Chandra X-ray Observatory

Y o

® ¢— SN 1979C

Ref: Patnaude et al, New Astronomy (2010)
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Plasma medicine: an introductory review
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Abstract. This inroductory review on plasma health care is intended o
provide the interested reader with a summary of the current status of this
emergzing field. its scope. and its broad imterdisciplinary approach. ramging
from plasma physics, chemistry and technology, to microbiology., biochemistry.
biophysics, medicine and hygiene. Apart from the basic plasma processes
and the restrictions and reguirements set by intermational health standards.
the review focuses on plasma interaction with prokaryvotic cells (bacteriald.
ceukaryotic cells {imammalian cells), cell membranes, DMNA etc. In so doing, some
of the vnfamiliar terminology—an unavoidable by-prodouct of interdisciplinary
rescarch—is coverad and explained. Plasma health care may provide a fast and
efficient new path for effective hospital (and other public buildings) hygiene—
helping o prevent and contain diseases that are continuouwusly gaining ground
as resistance of pathogens to antibiotics grows. The delivery of medically
active ‘substances’ at the molecular or 1onic level is another exciting topic
of rescarch through effects on cell walls (permeabilization), cell excitation
{paracrine action) and the introduction of reactuve species 1nto cell cytoplasm.
Electric fields, charging of surfaces, current flows etc can also affect tussue in
a controlled way., The field is voung and hopes are high. It is fitting to cover
the beginnings in New Jowrmal of Physics, since it is the physics (and non-
equilibmum chermistry ) of room temperature atmospheric pressure plasmas that
have made this development of plasma health care possible.

3 Author o whom any cormrespondence should be addressed.
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