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2. Anomalous cosmic rays (ACRs), that originate as interstellar neutral
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gies as high as 100 MeV/nucleon presumably close to the solar wind

termination shock or in the heliosheath.
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reaching GeV for protons and 100 MeV for electrons.
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The study of these particle populations at different latitudes and under dif-

ferent heliospheric conditions provides information about:

• the global structure of the heliosphere during solar minimum and so-

lar maximum conditions

• the mechanisms of particle propagation in the heliosphere

• properties of solar source regions (charge states, composition).

Energetic particles given insight both on the heliosphere and on processes

back at Sun.

Particle studies combine three aspects: origin/acceleration, propagation, de-

tection.
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The intensities of all particle populations which propagate through the he-

liosphere are affected by

• variations in the level of solar activity,

• the characteristics of the solar wind,

• the properties of the interplanetary magnetic field

Changes in these properties result in

• short-term and long-term modulations of GCRs and ACRs,

• variations in latitudinal and radial gradients of particle intensities,

• and changes in the energy spectra and composition of the heliospheric

energetic particle population.

This lecture will deal with SEP electrons.
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• In situ electrons observed near the Earth

– Inversion of observed electron profiles

– In-situ and hard x-rays

– The electron "delay" problem: type III bursts flares and CMEs

• Prospects
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Electrons from the Sun will propagate in the interplanetary magnetic field.

In the absence of large-scale disturbances like CMEs and shocks, the inter-

planetary magnetic field can be described as a smooth average field due to

the steady solar wind flow.

The magnetic field in the solar wind is “frozen” in the plasma, and is carried

by the solar wind flow.

The Sun rotates, so although the wind flowing from a given region in the

corona propagates radially, the solar wind will have a spiral structure.

Example:

• solar wind source initially at west limb (view from above)

• slow wind (400 km/s)

• radial flow in the ecliptic plane
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Up to Mercury’s orbit

the interplanetary mag-

netic field is nearly radial.

The typical spiral length

near Earth is ≈ 1.2 AU.

Particles in the ecliptic

plane need to travel huge

distances to reach radial

distances of a few AU

from the Sun center.

Fast wind from coronal

holes, complicates this

picture: around the Earth

orbit the fast wind catches

the slow wind.
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When the fast wind “catches” the slow wind a corating interaction region

(CIR) will develop, bound by a pair of reverse and forward shocks.

CIRs, iCMEs and iCME-associated shocks, and other features in the solar

wind affect article propagation (GCR modulation).

In what follows I will consider only the ideal situation: large scale spiral

magnetic field, with small scale irregularities. The real picture is much more

complicated.

I will consider only also particle with energies high enough so that solar

wind speed effects in their propagation can be ignored, particle speed is

constant (no adiabatic deceleration).
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With no solar wind effects included, particle propagation is based on the

model of focused transport illustrated by the equation (Roelof, 1969)
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+ µv
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2L
v
∂ f

∂µ
−
∂

∂µ

(

Dµµ(µ)
∂ f

∂µ

)

= Q(z, µ, t)

• z is the coordinate of the observer along the magnetic field line, µ is

the cosine of pitch angle, t the time, v is the particle velocity

• f = f (z, , t) particles phase space density

• L(z) is the focusing length of the field

• ν pitch angle diffusion coefficient

• Q(z, , t) is the source function.

References: Ruffolo (1991). ApJ 382:688-698. Ruffolo (1995). ApJ

442:861-874. Kocharov et al (1998). Solar Physics 182:192:215
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The equation includes terms describing the streaming of particles along the

field lines, and terms describing the change of the particles’ pitch angles.

L(z) = (1/B)(∂B)(∂z), the focusing length in the diverging magnetic field B,

characterizes the systematic forces caused by magnetic mirroring.

Conservation of a particle’s first adiabatic invariant

(1 − µ2)/B(r)

leads to an increase of µ as the particle propagates away from the Sun.

(In what follows I define µ > 0 to be outward from the Sun.)
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Adiabatic focusing: aligning the particles

Example:

• 100 keV electron released from 3 Rs

• outward motion, initial µ ≈ 0.1

• spiral magnetic field (solar wind 400 km/s)

• magnetic field intensity varying as R−2
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Problem

Consider B ∝ R−2

consider a particle at Venus with µ = −0.95

at what distance will it sent back?

what is the minimum |µ| for a particle, sent from Mars towards the Sun, to

reach the orbit of Mercury?

Orbit of Mercury: .38709821 AU. Orbit of Mars: 1.52366231 AU.
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Particles are subject to small-angle scatterings off magnetic turbulence.

Kinetic approach (Kocharov 1998), parametrized by a mean free path λ,

isotropic scattering, scattering centers frozen in the solar wind.

• a time step is chosen such that the particle only travels a very small

fraction if λ

• after each time step the position of the particle and its pitch angle are

updated using only the effects of adiabatic focusing

• Particles v and µ are then changed into solar wind frame of refer-

ence and scatter is added by performing small rotations in the particle

velocity vector following Kocharov (1998), assuming constant radial

mean free path).

• Then v and µ are transformed back and the process is repeated.
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• after each time step the position of the particle and its pitch angle are

updated using only the effects of adiabatic focusing

• Particles v and µ are then changed into solar wind frame of refer-

ence and scatter is added by performing small rotations in the particle

velocity vector following Kocharov (1998), assuming constant radial

mean free path).

• Then v and µ are transformed back and the process is repeated.
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Focused transport with scattering.

Example:

• 50 electrons, with 100 keV, released from 3 Rs in ecliptic plane

• outward motion, initial µ uniform in ]0,1[

• spiral magnetic field (solar wind 400 km/s)

• magnetic field intensity varying as R−2

• constant mean free path λ = 1 AU
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• constant mean free path λ = 0.5 AU
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• 50 electrons, with 100 keV, released from 3 Rs in ecliptic plane

• outward motion, initial µ uniform in ]0,1[

• spiral magnetic field (solar wind 400 km/s)

• magnetic field intensity varying as R−2

• constant mean free path λ = 0.1 AU
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• constant mean free path λ = 0.05 AU
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Individual particles “lose their memory”, one has to use statistical proper-

ties, like total flux and total anisotropy as a function of time to reconstruct

the history of a particle event back at the Sun:
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Individual particles “lose their memory”, one has to use statistical proper-

ties, like total flux and total anisotropy as a function of time to reconstruct

the history of a particle event back at the Sun:
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Individual particles “lose their memory”, one has to use statistical proper-

ties, like total flux and total anisotropy as a function of time to reconstruct

the history of a particle event back at the Sun:
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Electron telescopes measure the particle energy, E(R, t) and the particle

pitch angle (if magnetometer data are available). From these it is possible

to build the directional flux, F(µ, t; R, E) and, depending on the instrument,

it is also possible to recover the total flux:

I(t; R, E) =
1

2

∫ 1

−1

F(µ, t; R, E)dµ

Other important quantities are the total anisotropy:

A(t; R, E) =< µF(µ, t; R, E) >µ=
1

2

∫ 1

−1

µF(µ, t; R, E)dµ

And the average anisotropy:

a(t; R, E) = A(t; R, E)/I(t; R, E)
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200 keV electrons from EPAM/ACE. Long duration event, with anisotropic

onset. Slow rise and long duration could be related to long-lasting injection

at the Sun. Particles from anti-sunward direction at the onset suggest the

reason is very strong scattering.
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200 keV electrons from EPAM/ACE. Average pitch angle (anisotropy).



Modeling propagation effects

Kinetic treatment: 1 million particles generated randomly. Solar wind ef-

fects included, adiabatic focusing and isotropic scatter (mean free path does

not depend on the pitch angle).

for each λ the injection function is determined (deconvolution not a fit)

for each the average anisotropy is computed using the injection function

above

for each lambda the sum of the quadratic difference between observed and

model anisotropies is computed.
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Data are enough to chose between the different models.

Mean free path is ≈ 0.045 AU.
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Injection function peaks and drops relatively fast. It coincides with remote

observations of gyro-synchrotron emissions.

Ref: Maia et al (2007). ApJ 660:874-881.


