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Objectives

The pathway idea is a way of going from one family of functions to another family
of functions and yet another family of functions through a parameter in the model
so that a switching mechanism is introduced into the model through a parameter.

The advantage of the idea is that the model can cover the ideal or stable
situation in a physical situation as well as cover the unstable neighborhoods or
move from unstable neighborhoods to the stable situation.

The basic idea is illustrated for the real scalar case here and its connections to
the hot topics in astrophysics and non-extensive statistical mechanics namely
superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric
fucntions and generalized special functions such as H-function etc are pointed
out.

At each generalization, its connections to various quantities in different
disciplines are pointed out.

Pathway idea is available for the real and complex rectangular matrix variate
cases but only the real scalar case is illustrated here.
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Introduction

A lot of mathematical techniques in the area of special functions, statistical
techniques in the area of statistical distribution theory and characterizations and
information theory techniques in the area of generalizations of Shannon type
entropies and their axiomatic definitions and properties had been developed by
the first author from 1965 to 1980 period [Books: Mathai and Rathie (1975),
Mathai and Pederzoli (1977), Mathai and Saxena (1978)].

From the 1980’s applications of all these techniques into astrophysics problems
were explored in the areas of energy generation, solar and stellar models,
gravitational instability problem, neutrino problem and so on, [Books: Mathai and
Haubold (1988), Mathai (1993), Mathai and Haubold (2008), Mathai, Saxena and
Haubold (2010)].

A lot of interesting results, mathematically and statistically and perhaps with
potential of physical interpretations, could be obtained by the fusion of special
function theory, statistical distribution theory, information theory,
characterizations and astrophysics.

The present authors’ work in basic space sciences started in the 1980’s and then
in 1989 the present sequence of very successful UN Workshops was
conceptualized at the Centre for Mathematical Sciences.
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Introduction

An idea was introduced in the 1970’s by which one could go from one family of
functions to another family to yet another family, and later in 2005 [see
Mathai(2005)] the idea was extended to cover real and complex scalar
mathematical or random variables, rectangular matrix variables.
Consider a general input-output type situation.
It could be reactions producing new particles, diffusion or destruction of some
particles and thus the residual part is what is observed, it could be an industrial
production unit where input may be the money value of the raw materials put in
and the output may be the money value of the final product and so on.
Consider particle reactions and let N(t) be the number density at time t and the
rate of reaction denoted by dN(t)

dt .
If the number of particles produced is proportional to the original population size
then the differential equation is dN(t)

dt = λ N(t) where λ denotes the rate of
reactions.
Let the diffusion rate or destruction rate be µ then the residual rate is c = λ− µ.
If production dominates then c > 0 and if destruction dominates then c < 0.
Then for the model

dN(t)
dt

= −c N(t) ⇒ N(t) = N0 e−ct (1.1)

where N0 is the initial population size.
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Introduction

If the rate of change is proportional to a power of the population size and if decay
dominates then the equation and the solution are the following:

d
dt

N(t) = −c[N(t)]α ⇒ N(t) = −[1− c(1− α)t]
1

1−α . (1.2)

This is a power law type of behavior.
For α < 1 the function in (1.2) belongs to a particular case of a type-1 beta
family of functions. Let N(t) in (1.2) be denoted by N1(t).
For α > 1, by writing 1− α = −(α− 1) and denoting N(t) by N2(t), we have

N2(t) = [1 + c(α− 1)t]−
1

α−1 . (1.3)

Here (1.3) is a special case of a type-2 beta family of functions.
When α → 1, denoting N(t) by N3(t) in this case,

N3(t) = lim
t→1+

N2(t) = lim
t→1−

N1(t) = e−ct . (1.4)

This, in fact, is the model in (1.1).
N1(t) for α < 1 and N2(t) for α > 1 describe a wide range of models.
If the exponential form in (1.1) is the stable form in a physical situation then α
here can be called the stability parameter and N1(t) and N2(t) can describe the
unstable neighborhoods of N3(t).
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Optimization of Entropy

Models in physical situations are also constructed by optimizing entropy
measures.
The Shannon entropy in a probability scheme, for the continuous situation is

S(f ) = −k
∫ ∞

−∞
f (x) ln f (x)dx (2.1)

where f (x) is a statistical density and k is a constant.
When k is present, we can assume f (x) to be any non-negative integrable
function. S represents a measure of uncertainty in a probability scheme.
If S(t) is maximized over all functional f satisfying the condition

∫∞
−∞ f (x)dx = 1

and f (x) ≥ 0 for all x then f is the uniform density.
If (2.1) is maximized subject to two conditions (i):

∫∞
−∞ f (x)dx = 1 and (ii): E(x)

is a given quantity, E(x) =
∫∞
−∞ x f (x)dx = the expected value or the mean

value of x then we end up with f being an exponential density.
In (1.1)- (1.3) the second condition will imply that, E [N(t)] in a unity space in unit
time is a fixed quantity which can be interpreted as the principle of conservation
of energy.
If, further, the second moment E(x2) is also fixed then we have Gaussian or
normal density.
For a class of α-generalized entropies and their properties see the book: Mathai
and Rathie (1975).
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Optimization of Entropy

One of the α-generalized entropies, in the continuous case is

Mα(f ) =
[
∫∞
−∞(f (x))2−αdx − 1]

α− 1
, α 6= 1, α ≤ 2. (3.2)

Consider the optimization of (3.2) subject to the conditions

(a) :

∫ ∞

−∞
|x |δ f (x)dx = k1 < ∞,

(b) :

∫ ∞

−∞
|x |γ+δ f (x)dx = k2 < ∞

where k1 and k2 are fixed, and the optimization is done over all non-negative
integrable functions.
γ = 0, δ = 1 is the case leading to (1.1) to (1.3) or Tsallis statistics.
Consider the function g(f ) over all functional f , where

g(f ) = [f (x)]2−α − λ1 |x |γ f (x) + λ2 |x |γ+δ f (x)

where λ1 and λ2 are Lagrangian multipliers.
Then the Euler equation is given by

∂

∂f
g(f ) = 0 ⇒ (2− α)[f (x)]1−α − λ |x |γ + λ2 |x |γ+δ = 0

⇒ f (x) = c1|x |γ [1− a(1− α)|x |δ]
1

1−α (3.3)

where λ1
2−α

is taken as c1 and λ2
λ1

is taken as a(1− α), a > 0.
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Optimization of Entropy

Note that (3.3) for α < 1, a > 0, δ > 0, x > 0 can be called an extended
generalized type-1 beta model.

For α > 1, writing 1− α = −(α− 1), (3.3) reduces to the following:

f2(x) = c2|x |γ [1 + a(α− 1)|x |δ]
− 1

α−1 , α > 1, δ > 0, a > 0. (3.4)

Note that (3.4) can be called an extended generalized type-2 beta model.

Denoting f (x) under α < 1 as f1(x) we have

f3(x) = lim
α→1−

f1(x) = lim
α→1+

f2(x) = c3|x |γe−a|x|δ (3.5)

which can be called an extended generalized gamma model.

This is the entropic pathway.
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Optimization of Entropy

If f1(x), f2(x) of (3.3)-(3.5) are taken as statistical densities then c1, c2, c3 can
act as the normalizing constants, which are available by integrating out in
(3.3),(3.4) and (3.5) respectively.

c1 =
[a(1− α)]

γ+1
δ

2

Γ( γ+1
δ

+ 1
1−α

+ 1)

Γ( γ+1
δ

)Γ( 1
1−α

+ 1)
, α < 1, a > 0, δ > 0, γ + 1 > 0 (3.6)

c2 =
[a(α− 1)]

γ+1
δ

2

Γ( 1
α−1 )

Γ( γ+1
δ

)Γ( 1
α−1 −

γ+1
δ

)
, α > 1 (3.7)

a > 0, δ > 0, γ + 1 > 0,
1

α− 1
−

γ + 1
δ

> 0 and

c3 =
a

γ+1
δ

2Γ( γ+1
δ

)
, a > 0, δ > 0, γ + 1 > 0. (3.8)

The model in (3.3) for a general α is the scalar version of the pathway model of
Mathai (2005).This is the distributional pathway.
Here α is called the pathway parameter.

9 / 25 A. M. Mathai & H. J. Haubold The entropic, distributional and differential pathways ...



Introduction Optimization ... Bayesian ... Fractional ... A Mathematical ... Acknowledgment

Optimization of Entropy

If f1(x), f2(x) of (3.3)-(3.5) are taken as statistical densities then c1, c2, c3 can
act as the normalizing constants, which are available by integrating out in
(3.3),(3.4) and (3.5) respectively.

c1 =
[a(1− α)]

γ+1
δ

2

Γ( γ+1
δ

+ 1
1−α

+ 1)

Γ( γ+1
δ

)Γ( 1
1−α

+ 1)
, α < 1, a > 0, δ > 0, γ + 1 > 0 (3.6)

c2 =
[a(α− 1)]

γ+1
δ

2

Γ( 1
α−1 )

Γ( γ+1
δ

)Γ( 1
α−1 −

γ+1
δ

)
, α > 1 (3.7)

a > 0, δ > 0, γ + 1 > 0,
1

α− 1
−

γ + 1
δ

> 0 and

c3 =
a

γ+1
δ

2Γ( γ+1
δ

)
, a > 0, δ > 0, γ + 1 > 0. (3.8)

The model in (3.3) for a general α is the scalar version of the pathway model of
Mathai (2005).This is the distributional pathway.
Here α is called the pathway parameter.

9 / 25 A. M. Mathai & H. J. Haubold The entropic, distributional and differential pathways ...



Introduction Optimization ... Bayesian ... Fractional ... A Mathematical ... Acknowledgment

Optimization of Entropy

If f1(x), f2(x) of (3.3)-(3.5) are taken as statistical densities then c1, c2, c3 can
act as the normalizing constants, which are available by integrating out in
(3.3),(3.4) and (3.5) respectively.

c1 =
[a(1− α)]

γ+1
δ

2

Γ( γ+1
δ

+ 1
1−α

+ 1)

Γ( γ+1
δ

)Γ( 1
1−α

+ 1)
, α < 1, a > 0, δ > 0, γ + 1 > 0 (3.6)

c2 =
[a(α− 1)]

γ+1
δ

2

Γ( 1
α−1 )

Γ( γ+1
δ

)Γ( 1
α−1 −

γ+1
δ

)
, α > 1 (3.7)

a > 0, δ > 0, γ + 1 > 0,
1

α− 1
−

γ + 1
δ

> 0 and

c3 =
a

γ+1
δ

2Γ( γ+1
δ

)
, a > 0, δ > 0, γ + 1 > 0. (3.8)

The model in (3.3) for a general α is the scalar version of the pathway model of
Mathai (2005).This is the distributional pathway.
Here α is called the pathway parameter.

9 / 25 A. M. Mathai & H. J. Haubold The entropic, distributional and differential pathways ...



Introduction Optimization ... Bayesian ... Fractional ... A Mathematical ... Acknowledgment

Optimization of Entropy

If f1(x), f2(x) of (3.3)-(3.5) are taken as statistical densities then c1, c2, c3 can
act as the normalizing constants, which are available by integrating out in
(3.3),(3.4) and (3.5) respectively.

c1 =
[a(1− α)]

γ+1
δ

2

Γ( γ+1
δ

+ 1
1−α

+ 1)

Γ( γ+1
δ

)Γ( 1
1−α

+ 1)
, α < 1, a > 0, δ > 0, γ + 1 > 0 (3.6)

c2 =
[a(α− 1)]

γ+1
δ

2

Γ( 1
α−1 )

Γ( γ+1
δ

)Γ( 1
α−1 −

γ+1
δ

)
, α > 1 (3.7)

a > 0, δ > 0, γ + 1 > 0,
1

α− 1
−

γ + 1
δ

> 0 and

c3 =
a

γ+1
δ

2Γ( γ+1
δ

)
, a > 0, δ > 0, γ + 1 > 0. (3.8)

The model in (3.3) for a general α is the scalar version of the pathway model of
Mathai (2005).This is the distributional pathway.
Here α is called the pathway parameter.

9 / 25 A. M. Mathai & H. J. Haubold The entropic, distributional and differential pathways ...



Introduction Optimization ... Bayesian ... Fractional ... A Mathematical ... Acknowledgment

Optimization of Entropy

When α < 1 then the model describes the whole family of functions belonging to
extended generalized type-1 beta family.
When α > 1 then we move into the whole family of functions belonging to the
extended generalized type-2 beta family.
When α → 1 then both these families go into the family of extended generalized
gamma family.
This is the differential pathway.
Note that (3.3) for x > 0, γ = 0, δ = 1, a = 1 is Tsallis statistics of non-extensive
statistical mechanics which which works for all the cases of
α < 1, α > 1, α → 1.This particular case of (3.3) is also the model in (1.2).
Model (3.3) for α > 1, δ = 1, a = 1, x > 0 is what is known in the literature as
superstatistics [Beck and Cohen (2003), Beck (2006)].
Note that since superstatistics assumes the functional form in (3.4) for α > 1,
from superstatistics one cannot get (3.3) for α < 1.
In the family of pathway models, superstatistics is derived from the case α > 1
and α → 1 whereas Tsallis statistics covers all cases α < 1, α > 1, α → 1 but
the main restriction here is that γ = 0 or the factor xγ is absent in Tsallis model.
In superstatistics xγ is present but it covers only the type-2 beta (α > 1) and
gamma (α → 1) families of functions and not type-1 beta (α < 1) families of
functions.
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Bayesian Procedure

The model in (3.5) for a prefixed parameter a can be written as a conditional
density of the type

f4(x |a) =
a

γ+1
δ

2Γ( γ+1
δ

)
|x |γe−a|x|δ , a > 0,−∞ < x < ∞. (4.1)

Suppose that the parameter a has a prior density given by

g(a) =
1

ηεΓ(ε)
aε−1e−

a
η , a > 0, η > 0, ε > 0 (4.2)

where ε and η are known constants.
Then the unconditional density of x is given by∫

a
f4(x |a)g(a)da =

|x |γ

2ηεΓ(ε)Γ( γ+1
δ

)

∫ ∞

a=0
a

γ+1
δ

+ε−1e−a( 1
η

+|x|δ)da

=
|x |γΓ( γ+1

δ
+ ε)

2Γ( γ+1
δ

)ηεΓ(ε)
[
1
η

+ |x |δ]−( γ+1
δ

+ε)

=
|x |γΓ( γ+1

δ
+ ε)η

γ+1
δ

2Γ( γ+1
δ

)Γ(ε)
[1 + η|x |δ]−( γ+1

δ
+ε). (4.3)
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Bayesian Procedure

Note that for the convergence of the integral 1
η

+ |x |δ must remain positive.
Hence superstatistics can only produce type-2 beta family of functions when
considering gamma type conditional density for x |a and gamma type marginal
density for a.
When η is of the form b(α− 1), b > 0, α > 1 and γ+1

δ
+ ε = 1

α−1 then we have
the pathway model for α > 1.
The unconditional density of x in (4.3), denoted by fx (x), can also be interpreted
the following way: f4(x |a) is the density of x where a is a parameter.
Then we are superimposing another density g(a) on the density f4(x |a) and then
the resulting density fx (x) can be called superimposed statistics or
superstatistics.
Apparently when superstatistics was introduced they were unaware of Bayesian
procedures in Probability/Statistics.
In Bayesian procedure, superstatistics is the unconditional density of x when x
and the parameter a, for which a prior density is assumed, both belong to
gamma family of densities.
A more general family of unconditional densities is available from Mathai and
Haubold (2007).
Dozens of papers are published on superstatistics and it is being hotly pursued
in different disciplines.
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δ
+ ε = 1

α−1 then we have
the pathway model for α > 1.
The unconditional density of x in (4.3), denoted by fx (x), can also be interpreted
the following way: f4(x |a) is the density of x where a is a parameter.
Then we are superimposing another density g(a) on the density f4(x |a) and then
the resulting density fx (x) can be called superimposed statistics or
superstatistics.
Apparently when superstatistics was introduced they were unaware of Bayesian
procedures in Probability/Statistics.
In Bayesian procedure, superstatistics is the unconditional density of x when x
and the parameter a, for which a prior density is assumed, both belong to
gamma family of densities.
A more general family of unconditional densities is available from Mathai and
Haubold (2007).
Dozens of papers are published on superstatistics and it is being hotly pursued
in different disciplines.
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Fractional Considerations

Going back to our basic growth-decay problem where the rate of change is
proportional to the population size, our basic differential equation, equation (1.1),
is

d
dt

f (t) = −c f (t), c > 0 ⇒ f (t)− f0 = −c
∫

f (t)dt . (5.1)

If the total integral is replaced by a fractional integral of the Riemann-Liouville
type let us see what happens. The left sided Riemann-Liouville fractional integral
operator is denoted by 0D−α

x = 0Iαx and it is defined as

0D−α
x f =

1
Γ(α)

∫ x

0
(x − t)α−1f (t)dt ,<(α) > 0. (5.2)

Fractional integral can be given many interpretations in statistical literature as
fraction of a total integral, as the density of residual variable u = x − y where x
and y are independently distributed real positive random variables such that
x − y > 0 etc [Mathai (2010), Seema Nair (2010)].
If the total integral in (5.1) is replaced by fractional integral of (5.2) then the
equation becomes

f (x)− f0 = −c(0D−α
x f )(x) (5.3)

where f0 is a constant.
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Fractional Considerations

Let the Laplace parameter be s. Let the Laplace transform of f be denoted by
f̃ (s).
Then

Lf (s)− f0

∫ ∞

0
e−sx dx = −c

∫ ∞

x=0
e−sx [

1
Γ(α)

∫ x

0
(x − t)α−1f (t)dt]dx .

Then

f̃ −
f0
s

= −s−α f̃ (x) ⇒ f̃ =
f0

s[1 + cs−α]
(5.4)

= f0
∞∑

k=0

(
c

sα
)k (−1)k .

Taking the inverse Laplace transform we have

f (x) = f0
∞∑

k=0

(−1)k ck xαk

Γ(1 + αk)
= f0Eα(−cxα) (5.5)

where Eα(·) is the basic Mittag-Leffler function.
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Fractional Considerations

Generalization of the basic Mittag-Leffler function are the following:

Eα(x) =
∞∑

k=0

xk

Γ(1 + αk)
,<(α) > 0, E1(x) = ex

Eα,β(x) =
∞∑

k=0

xk

Γ(β + αk)
,<(α) > 0,<(β) > 0

Eγ
α,β(x) =

∞∑
k=0

(γ)k

k!

xk

Γ(β + αk)
,<(α) > 0,<(β) > 0 (5.6)

where (γ)k is the Pochhammer symbol

(γ)k = γ(γ + 1)...(γ + k − 1), (γ)0 = 1, γ 6= 0.

More generalized form of (5.5) is the Wright’s function, which is a special case of
the H-function.
More on the applications of these functions may be seen from Mathai and
Haubold (2008), Mathai et al. (2010).
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Fractional Considerations

It is seen that when we move from a total differential equation to a fractional
differential equation, Mittag-Leffler function and its generalizations, Wright
function and H-function enter into the solutions.

A series of recent papers are available on the solutions of fractional reaction
equations and fractional reaction-diffusion equations.

The Laplace transform in (5.4) belongs to a general class of Laplace transforms,
see Mathai et al. (2006) and the various references therein, and various
members from this general class appear when solving some fractional
differential equations.

Some of the papers may be seen from Haubold et al. (2011) and Saxena et al
(2010).

The effects of power transformations and exponentiation on various models can
be seen from a recent paper Mathai (2012).
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Fractional Considerations

Let us see what happens if a parameter is becoming larger and larger in a
Mittag-Leffler model of (5.6).
Suppose that β is real and it is becoming larger and larger.
Then by using the asymptotic expansion of gamma functions or as a first
approximation the Stirling’s formula

Γ(z + a) ≈
√

2πzz+a− 1
2 e−z for |z| → ∞, a is bounded

we see that

Γ(β)Eγ
δ,β(a(βx)δ) ≈

∞∑
k=0

ak (γ)k xδk

k!

√
2πββ− 1

2 e−β

√
2πββ− 1

2 +δk e−β

=
∞∑

k=0

ak (γ)k

k!
((

x
β

)δ)k = (1 + axδ)−γ . (5.7)

This is the pathway model, Tsallis statistics and superstatistics for the case
α > 1 for γ = 1

α−1 , a = b(α− 1), b > 0, α > 1, δ > 0. For γ = 1, (5.7)
becomes a power series.
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Mathematically speaking the whole process of transition from one functional form
to another, Tsallis statistics, superstatistics and pathway models in the scalar
case can be described as getting rid off some parameters from a hypergeometric
series.
Take for example a 1F1 series:

1F1(a; b; x) =
∞∑

k=0

(a)k

(b)k

xk

k!
. (6.1)

If we wish to get rid off an upper or lower parameter then we do a limiting
process.

lim
a→∞ 1F1(a; b;

x
a

) = 0F1( ; b; x)

lim
b→∞ 1F1(a; b; bx) = 1F0(a; ; x), |x | < 1

lim
a→∞ 1F0(a; ;

x
a

) = 0F0( ; ; x) = ex (6.2)

lim
b→∞ 0F1( ; b; bx) = 0F0( ; ; x) = ex . (6.3)
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All the above limiting forms are available by using the fact that

lim
a→∞

(a)k

ak
= 1 = lim

a→∞

ak

(a)k
. (6.4)

All these ideas are extended to the matrix-variate cases, to real positive definite,
hermitian positive definite and to rectangular matrices, see the basic paper
Mathai (2005), and later papers by the author and his co-workers are also
available.
One such model is the following:

f (X) = c |A
1
2 XBX ′A

1
2 |γ |I − a(1− α)A

1
2 XBX ′A

1
2 |

η
1−α (6.4)

where X is a p × r , r ≥ p matrix of full rank p of distinct real random or
mathematical variables, A is a p × p constant positive definite matrix, B is a r × r
constant positive definite matrix, X ′ denotes the transpose of X , A

1
2 denotes the

positive definite square root of the positive definite matrix A, f (X) is a real-valued
scalar function of X and c is a constant.
This c can act as a normalizing constant if f (X) is treated as a statistical density.
If the matrix X is relocated at some other matrix M then replace X by X −M in
the model.
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The constants η > 0, a > 0 and α are real scalars where α is the pathway
parameter.
For α < 1 the model in (6.4) will stay in the generalized real matrix-variate type-1
beta family of functions.
For α > 1 the model in (6.4) will go to the generalized real matrix-variate type-2
beta family of functions.
When α → 1 both these type-1 beta and type-2 beta families will go to a
generalized matrix-variate gamma family of functions.
This can be seen by using the result

lim
α→1

|I − a(1− α)A
1
2 XBX ′A

1
2 |

η
1−α = exp{−aη tr(A

1
2 XBX ′A

1
2 )}

where tr(·) denotes the trace of (·).
It can be seen that all the real matrix-variate densities that are used in the
current literature are available from the model (6.4) for various values of the
pathway parameter α.
A similar rich family is there if we consider the transition from a Bessel form to
the exponential form. Model, corresponding to the one in (6.4), is available when
the variables are in the complex domain also.
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