

Introduction

Optimization ...

Bayesian ...

Fractional ...

A Mathematical ...

Acknowledgment

The entropic, distributional and differential pathways to model building

A. M. Mathai¹ & H. J. Haubold²

¹Director, Centre for Mathematical Sciences,India, Arunapuram P.O., Palai, Kerala 686 574, India and Emeritus Professor, McGill University, Montreal, Canada. (directorcms458@gmail.com; cmspala@gmail.com; mathai@math.mcgill.ca) and ² Office of Outer Space Affairs, United Nations, P.O. Box 500, Vienna International Centre, A-1400 Vienna, Austria. (hans.haubold@unvienna.org;hans.haubold@unoosa.org)

Ecuador, October 2012

・ 同 ト ・ 三 ト ・ 三 ト

Introduction	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Objecti	ves				

- The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the model so that a switching mechanism is introduced into the model through a parameter.
- The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation.
- The basic idea is illustrated for the real scalar case here and its connections to the hot topics in astrophysics and non-extensive statistical mechanics namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric functions and generalized special functions such as H-function etc are pointed out.
- At each generalization, its connections to various quantities in different disciplines are pointed out.
- Pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

Introduction	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Obiectiv	/es				

- The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the model so that a switching mechanism is introduced into the model through a parameter.
- The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation.
- The basic idea is illustrated for the real scalar case here and its connections to the hot topics in astrophysics and non-extensive statistical mechanics namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric functions and generalized special functions such as H-function etc are pointed out.
- At each generalization, its connections to various quantities in different disciplines are pointed out.
- Pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Objectiv	/es				

- The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the model so that a switching mechanism is introduced into the model through a parameter.
- The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation.
- The basic idea is illustrated for the real scalar case here and its connections to the hot topics in astrophysics and non-extensive statistical mechanics namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric fucntions and generalized special functions such as H-function etc are pointed out.
- At each generalization, its connections to various quantities in different disciplines are pointed out.
- Pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Objectiv	/es				

- The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the model so that a switching mechanism is introduced into the model through a parameter.
- The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation.
- The basic idea is illustrated for the real scalar case here and its connections to the hot topics in astrophysics and non-extensive statistical mechanics namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric fucntions and generalized special functions such as H-function etc are pointed out.
- At each generalization, its connections to various quantities in different disciplines are pointed out.
- Pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

イロト 不同 トイヨト イヨト

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Objectiv	/es				

- The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the model so that a switching mechanism is introduced into the model through a parameter.
- The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation.
- The basic idea is illustrated for the real scalar case here and its connections to the hot topics in astrophysics and non-extensive statistical mechanics namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric fucntions and generalized special functions such as H-function etc are pointed out.
- At each generalization, its connections to various quantities in different disciplines are pointed out.
- Pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

イロト イポト イヨト イヨト

Introduction ●○○	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Introduo	ction				

- A lot of mathematical techniques in the area of special functions, statistical techniques in the area of statistical distribution theory and characterizations and information theory techniques in the area of generalizations of Shannon type entropies and their axiomatic definitions and properties had been developed by the first author from 1965 to 1980 period [Books: Mathai and Rathie (1975), Mathai and Pederzoli (1977), Mathai and Saxena (1978)].
- From the 1980's applications of all these techniques into astrophysics problems were explored in the areas of energy generation, solar and stellar models, gravitational instability problem, neutrino problem and so on, [Books: Mathai and Haubold (1988), Mathai (1993), Mathai and Haubold (2008), Mathai, Saxena and Haubold (2010)].
- A lot of interesting results, mathematically and statistically and perhaps with potential of physical interpretations, could be obtained by the fusion of special function theory, statistical distribution theory, information theory, characterizations and astrophysics.
- The present authors' work in basic space sciences started in the 1980's and then in 1989 the present sequence of very successful UN Workshops was conceptualized at the Centre for Mathematical Sciences.

ヘロン 不良 とくほう 不良 とう

Introduction ●○○	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Introduo	ction				

- A lot of mathematical techniques in the area of special functions, statistical techniques in the area of statistical distribution theory and characterizations and information theory techniques in the area of generalizations of Shannon type entropies and their axiomatic definitions and properties had been developed by the first author from 1965 to 1980 period [Books: Mathai and Rathie (1975), Mathai and Pederzoli (1977), Mathai and Saxena (1978)].
- From the 1980's applications of all these techniques into astrophysics problems were explored in the areas of energy generation, solar and stellar models, gravitational instability problem, neutrino problem and so on, [Books: Mathai and Haubold (1988), Mathai (1993), Mathai and Haubold (2008), Mathai, Saxena and Haubold (2010)].
- A lot of interesting results, mathematically and statistically and perhaps with potential of physical interpretations, could be obtained by the fusion of special function theory, statistical distribution theory, information theory, characterizations and astrophysics.
- The present authors' work in basic space sciences started in the 1980's and then in 1989 the present sequence of very successful UN Workshops was conceptualized at the Centre for Mathematical Sciences.

Introduction ●○○	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introduo	ction				

- A lot of mathematical techniques in the area of special functions, statistical techniques in the area of statistical distribution theory and characterizations and information theory techniques in the area of generalizations of Shannon type entropies and their axiomatic definitions and properties had been developed by the first author from 1965 to 1980 period [Books: Mathai and Rathie (1975), Mathai and Pederzoli (1977), Mathai and Saxena (1978)].
- From the 1980's applications of all these techniques into astrophysics problems were explored in the areas of energy generation, solar and stellar models, gravitational instability problem, neutrino problem and so on, [Books: Mathai and Haubold (1988), Mathai (1993), Mathai and Haubold (2008), Mathai, Saxena and Haubold (2010)].
- A lot of interesting results, mathematically and statistically and perhaps with potential of physical interpretations, could be obtained by the fusion of special function theory, statistical distribution theory, information theory, characterizations and astrophysics.
- The present authors' work in basic space sciences started in the 1980's and then in 1989 the present sequence of very successful UN Workshops was conceptualized at the Centre for Mathematical Sciences.

イロト 不得 トイヨト イヨト

Introduction ●○○	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introduc	ction				

- A lot of mathematical techniques in the area of special functions, statistical techniques in the area of statistical distribution theory and characterizations and information theory techniques in the area of generalizations of Shannon type entropies and their axiomatic definitions and properties had been developed by the first author from 1965 to 1980 period [Books: Mathai and Rathie (1975), Mathai and Pederzoli (1977), Mathai and Saxena (1978)].
- From the 1980's applications of all these techniques into astrophysics problems were explored in the areas of energy generation, solar and stellar models, gravitational instability problem, neutrino problem and so on, [Books: Mathai and Haubold (1988), Mathai (1993), Mathai and Haubold (2008), Mathai, Saxena and Haubold (2010)].
- A lot of interesting results, mathematically and statistically and perhaps with potential of physical interpretations, could be obtained by the fusion of special function theory, statistical distribution theory, information theory, characterizations and astrophysics.
- The present authors' work in basic space sciences started in the 1980's and then in 1989 the present sequence of very successful UN Workshops was conceptualized at the Centre for Mathematical Sciences.

イロト イポト イヨト イヨト

Introduction ○●○	Optimization	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \ \mathsf{N}(t) \Rightarrow \mathsf{N}(t) = \mathsf{N}_0 \ \mathrm{e}^{-c}$$

э

where N_0 is the initial population size.

The entropic, distributional and differential pathways ...

イロト 不得 とくほと くほとう

Introduction ○●○	Optimization 00000	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \ \mathsf{N}(t) \Rightarrow \mathsf{N}(t) = \mathsf{N}_0 \ \mathrm{e}^{-c}$$

where N_0 is the initial population size.

The entropic, distributional and differential pathways ...

<ロ> <問> <問> < E> < E> = E

Introduction ○●○	Optimization	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \ \mathsf{N}(t) \Rightarrow \mathsf{N}(t) = \mathsf{N}_0 \ \mathrm{e}^{-c}$$

ъ

where N_0 is the initial population size.

The entropic, distributional and differential pathways ...

ヘロト 人間 とくほとう ほとう

Introduction ○●○	Optimization	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \ N(t) \Rightarrow N(t) = N_0 \ \mathrm{e}^{-c}$$

ъ

where N_0 is the initial population size.

The entropic, distributional and differential pathways ...

イロト イロト イヨト イヨト

Introduction ○●○	Optimization	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \ N(t) \Rightarrow N(t) = N_0 \ \mathrm{e}^{-c}$$

where N_0 is the initial population size.

ヘロト 人間 とくほ とくき とう

Introduction ○●○	Optimization 00000	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \ N(t) \Rightarrow N(t) = N_0 \ \mathrm{e}^{-c}$$

where N_0 is the initial population size.

The entropic, distributional and differential pathways ...

イロト 不同 トイヨト イヨト

Introduction ○●○	Optimization 00000	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Introdu	ction				

- An idea was introduced in the 1970's by which one could go from one family of functions to another family to yet another family, and later in 2005 [see Mathai(2005)] the idea was extended to cover real and complex scalar mathematical or random variables, rectangular matrix variables.
- Consider a general input-output type situation.
- It could be reactions producing new particles, diffusion or destruction of some particles and thus the residual part is what is observed, it could be an industrial production unit where input may be the money value of the raw materials put in and the output may be the money value of the final product and so on.
- Consider particle reactions and let N(t) be the number density at time t and the rate of reaction denoted by $\frac{dN(t)}{dt}$.
- If the number of particles produced is proportional to the original population size then the differential equation is $\frac{dN(t)}{dt} = \lambda N(t)$ where λ denotes the rate of reactions.
- Let the diffusion rate or destruction rate be μ then the residual rate is $c = \lambda \mu$. If production dominates then c > 0 and if destruction dominates then c < 0.
- Then for the model

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -c \, N(t) \Rightarrow N(t) = N_0 \, \mathrm{e}^{-ct}$$

イロト 不同 とくほ とくほ とう

where N_0 is the initial population size.

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
A					

Introduction

If the rate of change is proportional to a power of the population size and if decay dominates then the equation and the solution are the following:

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1 - c(1 - \alpha)t]^{\frac{1}{1 - \alpha}}.$$
 (1.2)

This is a power law type of behavior.

For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.

For $\alpha > 1$, by writing $1 - \alpha = -(\alpha - 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
 (1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \rightarrow 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

N₁(*t*) for $\alpha < 1$ and N₂(*t*) for $\alpha > 1$ describe a wide range of models.

Introduction ○○●	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introdu	ction				

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1 - c(1 - \alpha)t]^{\frac{1}{1 - \alpha}}.$$
(1.2)

This is a power law type of behavior.

For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.

For $\alpha > 1$, by writing $1 - \alpha = -(\alpha - 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
(1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \rightarrow 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

• $N_1(t)$ for $\alpha < 1$ and $N_2(t)$ for $\alpha > 1$ describe a wide range of models.

Introduction ○○●	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introdu	ction				

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1 - c(1 - \alpha)t]^{\frac{1}{1 - \alpha}}.$$
(1.2)

This is a power law type of behavior.

- For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.
- For $\alpha > 1$, by writing $1 \alpha = -(\alpha 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
 (1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \to 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

N₁(*t*) for $\alpha < 1$ and N₂(*t*) for $\alpha > 1$ describe a wide range of models.

Introduction ○○●	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introdu	ction				

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1 - c(1 - \alpha)t]^{\frac{1}{1 - \alpha}}.$$
(1.2)

This is a power law type of behavior.

- For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.
- For $\alpha > 1$, by writing $1 \alpha = -(\alpha 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
 (1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \to 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

N₁(*t*) for $\alpha < 1$ and N₂(*t*) for $\alpha > 1$ describe a wide range of models.

Introduction ○○●	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introdu	ction				

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1-c(1-\alpha)t]^{\frac{1}{1-\alpha}}.$$
(1.2)

This is a power law type of behavior.

- For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.
- For $\alpha > 1$, by writing $1 \alpha = -(\alpha 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
 (1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \to 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

 $N_1(t)$ for $\alpha < 1$ and $N_2(t)$ for $\alpha > 1$ describe a wide range of models.

Introduction ○○●	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introdu	ction				

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1 - c(1 - \alpha)t]^{\frac{1}{1 - \alpha}}.$$
(1.2)

This is a power law type of behavior.

- For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.
- For $\alpha > 1$, by writing $1 \alpha = -(\alpha 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
 (1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \to 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

- **I** $N_1(t)$ for $\alpha < 1$ and $N_2(t)$ for $\alpha > 1$ describe a wide range of models.
- If the exponential form in (1.1) is the stable form in a physical situation then α here can be called the *stability parameter* and $N_1(t)$ and $N_2(t)$ can describe the unstable neighborhoods of $N_3(t)$.

Introduction ○○●	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Introdu	ction				

$$\frac{\mathrm{d}}{\mathrm{d}t}N(t) = -c[N(t)]^{\alpha} \Rightarrow N(t) = -[1 - c(1 - \alpha)t]^{\frac{1}{1 - \alpha}}.$$
(1.2)

This is a power law type of behavior.

- For $\alpha < 1$ the function in (1.2) belongs to a particular case of a type-1 beta family of functions. Let N(t) in (1.2) be denoted by $N_1(t)$.
- For $\alpha > 1$, by writing $1 \alpha = -(\alpha 1)$ and denoting N(t) by $N_2(t)$, we have

$$N_2(t) = [1 + c(\alpha - 1)t]^{-\frac{1}{\alpha - 1}}.$$
 (1.3)

- Here (1.3) is a special case of a type-2 beta family of functions.
- When $\alpha \to 1$, denoting N(t) by $N_3(t)$ in this case,

$$N_3(t) = \lim_{t \to 1_+} N_2(t) = \lim_{t \to 1_-} N_1(t) = e^{-ct}.$$
 (1.4)

This, in fact, is the model in (1.1).

N₁(*t*) for $\alpha < 1$ and $N_2(t)$ for $\alpha > 1$ describe a wide range of models.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
	0000				

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a measure of uncertainty in a probability scheme.
- If S(t) is maximized over all functional f satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all x then f is the uniform density.
- If (2.1) is maximized subject to two conditions (i): $\int_{-\infty}^{\infty} f(x) dx = 1$ and (ii): E(x) is a given quantity, $E(x) = \int_{-\infty}^{\infty} x f(x) dx =$ the expected value or the mean value of *x* then we end up with *f* being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.
- For a class of α-generalized entropies and their properties see the book: Mathai and Rathie (1975).

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
	00000				

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
 (2.1)

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a *measure of uncertainty* in a probability scheme.
- If S(t) is maximized over all functional f satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all x then f is the uniform density.
- If (2.1) is maximized subject to two conditions (i): $\int_{-\infty}^{\infty} f(x) dx = 1$ and (ii): E(x) is a given quantity, $E(x) = \int_{-\infty}^{\infty} x f(x) dx =$ the expected value or the mean value of *x* then we end up with *f* being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.
- For a class of α-generalized entropies and their properties see the book: Mathai and Rathie (1975).

Introduction	Optimization ●0000	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a measure of uncertainty in a probability scheme.
- If S(t) is maximized over all functional f satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all x then f is the uniform density.
- If (2.1) is maximized subject to two conditions (i): $\int_{-\infty}^{\infty} f(x) dx = 1$ and (ii): E(x) is a given quantity, $E(x) = \int_{-\infty}^{\infty} x f(x) dx =$ the expected value or the mean value of *x* then we end up with *f* being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.
- For a class of α-generalized entropies and their properties see the book: Mathai and Rathie (1975).

Introduction	Optimization ●○○○○	Bayesian 00	Fractional	A Mathematical	Acknowledgment

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a measure of uncertainty in a probability scheme.
- If S(t) is maximized over all functional f satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all x then f is the uniform density.
- If (2.1) is maximized subject to two conditions (i): $\int_{-\infty}^{\infty} f(x) dx = 1$ and (ii): E(x) is a given quantity, $E(x) = \int_{-\infty}^{\infty} x f(x) dx =$ the expected value or the mean value of *x* then we end up with *f* being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.

Introduction	Optimization ●0000	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a measure of uncertainty in a probability scheme.
- If S(t) is maximized over all functional *f* satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all *x* then *f* is the uniform density.
- If (2.1) is maximized subject to two conditions (i): $\int_{-\infty}^{\infty} f(x) dx = 1$ and (ii): E(x) is a given quantity, $E(x) = \int_{-\infty}^{\infty} x f(x) dx =$ the expected value or the mean value of x then we end up with f being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.

Introduction	Optimization ●0000	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

- When *k* is present, we can assume *f*(*x*) to be any non-negative integrable function. *S* represents a *measure of uncertainty* in a probability scheme.
- If S(t) is maximized over all functional f satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all x then f is the uniform density.
- If (2.1) is maximized subject to two conditions (i): ∫[∞]_{-∞} f(x)dx = 1 and (ii): E(x) is a given quantity, E(x) = ∫[∞]_{-∞} x f(x)dx = the expected value or the mean value of x then we end up with f being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.

Introduction	Optimization ●0000	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a measure of uncertainty in a probability scheme.
- If S(t) is maximized over all functional *f* satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all *x* then *f* is the uniform density.
- If (2.1) is maximized subject to two conditions (i): $\int_{-\infty}^{\infty} f(x) dx = 1$ and (ii): E(x) is a given quantity, $E(x) = \int_{-\infty}^{\infty} x f(x) dx =$ the expected value or the mean value of x then we end up with f being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.

Introduction	Optimization ●0000	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment

- Models in physical situations are also constructed by optimizing entropy measures.
- The Shannon entropy in a probability scheme, for the continuous situation is

$$S(f) = -k \int_{-\infty}^{\infty} f(x) \ln f(x) dx$$
(2.1)

where f(x) is a statistical density and k is a constant.

- When k is present, we can assume f(x) to be any non-negative integrable function. S represents a measure of uncertainty in a probability scheme.
- If S(t) is maximized over all functional *f* satisfying the condition $\int_{-\infty}^{\infty} f(x) dx = 1$ and $f(x) \ge 0$ for all *x* then *f* is the uniform density.
- If (2.1) is maximized subject to two conditions (i): ∫[∞]_{-∞} f(x)dx = 1 and (ii): E(x) is a given quantity, E(x) = ∫[∞]_{-∞} x f(x)dx = the expected value or the mean value of x then we end up with f being an exponential density.
- In (1.1)- (1.3) the second condition will imply that, E[N(t)] in a unity space in unit time is a fixed quantity which can be interpreted as the principle of conservation of energy.
- If, further, the second moment $E(x^2)$ is also fixed then we have Gaussian or normal density.

For a class of α-generalized entropies and their properties see the book: Mathai and Rathie (1975).

Introduction	Optimization ○●○○○	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment

• One of the α -generalized entropies, in the continuous case is

$$M_{\alpha}(t) = \frac{\left[\int_{-\infty}^{\infty} (f(x))^{2-\alpha} dx - 1\right]}{\alpha - 1}, \alpha \neq 1, \alpha \le 2.$$
(3.2)

Consider the optimization of (3.2) subject to the conditions

(a):
$$\int_{-\infty}^{\infty} |x|^{\delta} f(x) dx = k_1 < \infty,$$

(b):
$$\int_{-\infty}^{\infty} |x|^{\gamma+\delta} f(x) dx = k_2 < \infty$$

where k_1 and k_2 are fixed, and the optimization is done over all non-negative integrable functions.

- $\gamma = 0, \delta = 1$ is the case leading to (1.1) to (1.3) or Tsallis statistics.
- Consider the function g(f) over all functional f, where

$g(f) = [f(x)]^{2-\alpha} - \lambda_1 |x|^{\gamma} f(x) + \lambda_2 |x|^{\gamma+\delta} f(x)$

where λ_1 and λ_2 are Lagrangian multipliers.

Then the Euler equation is given by

$$\frac{\partial}{\partial f}g(f) = 0 \Rightarrow (2-\alpha)[f(x)]^{1-\alpha} - \lambda |x|^{\gamma} + \lambda_2 |x|^{\gamma+\delta} = 0$$

B >

Introduction	Optimization ○●○○○	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
A	–				

• One of the α -generalized entropies, in the continuous case is

$$M_{\alpha}(f) = \frac{\left[\int_{-\infty}^{\infty} (f(x))^{2-\alpha} dx - 1\right]}{\alpha - 1}, \alpha \neq 1, \alpha \le 2.$$
(3.2)

Consider the optimization of (3.2) subject to the conditions

(a):
$$\int_{-\infty}^{\infty} |x|^{\delta} f(x) dx = k_1 < \infty,$$

(b):
$$\int_{-\infty}^{\infty} |x|^{\gamma+\delta} f(x) dx = k_2 < \infty$$

where k_1 and k_2 are fixed, and the optimization is done over all non-negative integrable functions.

 $\gamma = 0, \delta = 1$ is the case leading to (1.1) to (1.3) or Tsallis statistics.

Consider the function g(f) over all functional f, where

$g(f) = [f(x)]^{2-\alpha} - \lambda_1 |x|^{\gamma} f(x) + \lambda_2 |x|^{\gamma+\delta} f(x)$

where λ_1 and λ_2 are Lagrangian multipliers. Then the Euler equation is given by

$$\frac{\partial}{\partial f}g(f) = 0 \Rightarrow (2-\alpha)[f(x)]^{1-\alpha} - \lambda |x|^{\gamma} + \lambda_2 |x|^{\gamma+\delta} = 0$$

Introduction	Optimization ○●○○○	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
A					

• One of the α -generalized entropies, in the continuous case is

$$M_{\alpha}(f) = \frac{\left[\int_{-\infty}^{\infty} (f(x))^{2-\alpha} dx - 1\right]}{\alpha - 1}, \alpha \neq 1, \alpha \le 2.$$
(3.2)

Consider the optimization of (3.2) subject to the conditions

(a):
$$\int_{-\infty}^{\infty} |x|^{\delta} f(x) dx = k_1 < \infty,$$

(b):
$$\int_{-\infty}^{\infty} |x|^{\gamma+\delta} f(x) dx = k_2 < \infty$$

where k_1 and k_2 are fixed, and the optimization is done over all non-negative integrable functions.

• $\gamma = 0, \delta = 1$ is the case leading to (1.1) to (1.3) or Tsallis statistics.

Consider the function g(f) over all functional f, where

$g(f) = [f(x)]^{2-\alpha} - \lambda_1 |x|^{\gamma} f(x) + \lambda_2 |x|^{\gamma+\delta} f(x)$

where λ_1 and λ_2 are Lagrangian multipliers. Then the Euler equation is given by

$$\frac{\partial}{\partial f}g(f) = 0 \Rightarrow (2-\alpha)[f(x)]^{1-\alpha} - \lambda |x|^{\gamma} + \lambda_2 |x|^{\gamma+\delta} = 0$$

A. M. Mathai & H. J. Haubold The entropic, distributional and differential pathways ...
Introduction	Optimization ○●○○○	Bayesian 00	Fractional	A Mathematical	Acknowledgment
A 11 1					

• One of the α -generalized entropies, in the continuous case is

$$M_{\alpha}(f) = \frac{\left[\int_{-\infty}^{\infty} (f(x))^{2-\alpha} dx - 1\right]}{\alpha - 1}, \alpha \neq 1, \alpha \le 2.$$
(3.2)

Consider the optimization of (3.2) subject to the conditions

(a):
$$\int_{-\infty}^{\infty} |x|^{\delta} f(x) dx = k_1 < \infty,$$

(b):
$$\int_{-\infty}^{\infty} |x|^{\gamma+\delta} f(x) dx = k_2 < \infty$$

where k_1 and k_2 are fixed, and the optimization is done over all non-negative integrable functions.

- $\gamma = 0, \delta = 1$ is the case leading to (1.1) to (1.3) or Tsallis statistics.
- Consider the function g(f) over all functional f, where

$$g(f) = [f(x)]^{2-\alpha} - \lambda_1 |x|^{\gamma} f(x) + \lambda_2 |x|^{\gamma+\delta} f(x)$$

where λ_1 and λ_2 are Lagrangian multipliers.

Then the Euler equation is given by

Introduction	Optimization ○●○○○	Bayesian 00	Fractional	A Mathematical	Acknowledgment
A 11 1					

• One of the α -generalized entropies, in the continuous case is

$$M_{\alpha}(f) = \frac{\left[\int_{-\infty}^{\infty} (f(x))^{2-\alpha} dx - 1\right]}{\alpha - 1}, \alpha \neq 1, \alpha \le 2.$$
(3.2)

Consider the optimization of (3.2) subject to the conditions

(a):
$$\int_{-\infty}^{\infty} |x|^{\delta} f(x) dx = k_1 < \infty,$$

(b):
$$\int_{-\infty}^{\infty} |x|^{\gamma+\delta} f(x) dx = k_2 < \infty$$

where k_1 and k_2 are fixed, and the optimization is done over all non-negative integrable functions.

- $\gamma = 0, \delta = 1$ is the case leading to (1.1) to (1.3) or Tsallis statistics.
- Consider the function g(f) over all functional f, where

$$g(f) = [f(x)]^{2-\alpha} - \lambda_1 |x|^{\gamma} f(x) + \lambda_2 |x|^{\gamma+\delta} f(x)$$

where λ_1 and λ_2 are Lagrangian multipliers.

Then the Euler equation is given by

$$\frac{\partial}{\partial f}g(f) = 0 \Rightarrow (2-\alpha)[f(x)]^{1-\alpha} - \lambda |x|^{\gamma} + \lambda_2 |x|^{\gamma+\delta} = 0$$

Introduction	Optimization ○○●○○	Bayesian oo	Fractional 00000	A Mathematical	Acknowledgment
A 11 1					

- Note that (3.3) for α < 1, a > 0, δ > 0, x > 0 can be called an extended generalized type-1 beta model.
- For $\alpha > 1$, writing $1 \alpha = -(\alpha 1)$, (3.3) reduces to the following:

$$f_2(x) = c_2 |x|^{\gamma} [1 + a(\alpha - 1)|x|^{\delta}]^{-\frac{1}{\alpha - 1}}, \alpha > 1, \delta > 0, a > 0.$$
(3.4)

- Note that (3.4) can be called an extended generalized type-2 beta model.
- Denoting f(x) under $\alpha < 1$ as $f_1(x)$ we have

$$f_3(x) = \lim_{\alpha \to 1_-} f_1(x) = \lim_{\alpha \to 1_+} f_2(x) = c_3 |x|^{\gamma} e^{-a|x|^{\circ}}$$
(3.5)

which can be called an extended generalized gamma model.

This is the entropic pathway

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Optimization ○○●○○	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Ontimiz	zation of F	ntrony			

- Note that (3.3) for α < 1, a > 0, δ > 0, x > 0 can be called an extended generalized type-1 beta model.
- For $\alpha > 1$, writing $1 \alpha = -(\alpha 1)$, (3.3) reduces to the following:

$$f_2(x) = c_2 |x|^{\gamma} [1 + a(\alpha - 1)|x|^{\delta}]^{-\frac{1}{\alpha - 1}}, \alpha > 1, \delta > 0, a > 0.$$
(3.4)

Note that (3.4) can be called an extended generalized type-2 beta model.
 Denoting f(x) under a < 1 as f₁(x) we have

$$f_3(x) = \lim_{\alpha \to 1_-} f_1(x) = \lim_{\alpha \to 1_+} f_2(x) = c_3 |x|^{\gamma} e^{-a|x|^{\delta}}$$
(3.5)

which can be called an extended generalized gamma model.

This is the entropic pathway

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Optimiz	zation of E	ntropy			

- Note that (3.3) for α < 1, a > 0, δ > 0, x > 0 can be called an extended generalized type-1 beta model.
- For $\alpha > 1$, writing $1 \alpha = -(\alpha 1)$, (3.3) reduces to the following:

$$f_2(x) = c_2 |x|^{\gamma} [1 + a(\alpha - 1)|x|^{\delta}]^{-\frac{1}{\alpha - 1}}, \alpha > 1, \delta > 0, a > 0.$$
(3.4)

- Note that (3.4) can be called an extended generalized type-2 beta model.
- Denoting f(x) under $\alpha < 1$ as $f_1(x)$ we have

$$f_3(x) = \lim_{\alpha \to 1_-} f_1(x) = \lim_{\alpha \to 1_+} f_2(x) = c_3 |x|^{\gamma} e^{-a|x|^{\nu}}$$
(3.5)

which can be called an extended generalized gamma model.

This is the entropic pathway.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Optimiz	ation of E	ntropy			

- Note that (3.3) for α < 1, a > 0, δ > 0, x > 0 can be called an extended generalized type-1 beta model.
- For $\alpha > 1$, writing $1 \alpha = -(\alpha 1)$, (3.3) reduces to the following:

$$f_2(x) = c_2 |x|^{\gamma} [1 + a(\alpha - 1)|x|^{\delta}]^{-\frac{1}{\alpha - 1}}, \alpha > 1, \delta > 0, a > 0.$$
(3.4)

- Note that (3.4) can be called an extended generalized type-2 beta model.
 Denoting f(x) under α < 1 as f₁(x) we have
 - $f(x) = \lim_{\lambda \to 0} f(x) = \lim_{\lambda \to 0} f(x) = c_1 |x|^{\gamma_0} a|x|^{\delta}$

$$f_3(x) = \lim_{\alpha \to 1_-} f_1(x) = \lim_{\alpha \to 1_+} f_2(x) = c_3 |x|^{\gamma} e^{-a|x|^{\circ}}$$
(3.5)

which can be called an extended generalized gamma model.

This is the entropic pathway.

イロト イポト イヨト イヨト

-

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Optimiz	zation of E	ntropy			

- Note that (3.3) for α < 1, a > 0, δ > 0, x > 0 can be called an extended generalized type-1 beta model.
- For $\alpha > 1$, writing $1 \alpha = -(\alpha 1)$, (3.3) reduces to the following:

$$f_2(x) = c_2 |x|^{\gamma} [1 + a(\alpha - 1)|x|^{\delta}]^{-\frac{1}{\alpha - 1}}, \alpha > 1, \delta > 0, a > 0.$$
(3.4)

- Note that (3.4) can be called an extended generalized type-2 beta model.
- Denoting f(x) under $\alpha < 1$ as $f_1(x)$ we have

$$f_3(x) = \lim_{\alpha \to 1_-} f_1(x) = \lim_{\alpha \to 1_+} f_2(x) = c_3 |x|^{\gamma} e^{-a|x|^{\circ}}$$
(3.5)

. . . .

イロト イポト イヨト イヨト

which can be called an extended generalized gamma model.

This is the entropic pathway.

-

Introduction	Optimization ○○○●○	Bayesian 00	Fractional	A Mathematical	Acknowledgment
-					

If $f_1(x)$, $f_2(x)$ of (3.3)-(3.5) are taken as statistical densities then c_1 , c_2 , c_3 can act as the normalizing constants, which are available by integrating out in (3.3),(3.4) and (3.5) respectively.

$$c_{1} = \frac{\left[a(1-\alpha)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{\gamma+1}{\delta} + \frac{1}{1-\alpha} + 1)}{\Gamma(\frac{\gamma+1}{1-\alpha} + 1)}, \alpha < 1, a > 0, \delta > 0, \gamma + 1 > 0 \quad (3.6)$$

$$c_2 = \frac{\left[a(\alpha-1)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{1}{\alpha-1})}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{\alpha-1}-\frac{\gamma+1}{\delta})}, \alpha > 1$$
(3.7)

$$a>0,\delta>0,\gamma+1>0,rac{1}{lpha-1}-rac{\gamma+1}{\delta}>0$$
 and

$$c_3 = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})}, a > 0, \delta > 0, \gamma+1 > 0.$$

$$(3.8)$$

- The model in (3.3) for a general α is the scalar version of the pathway model of Mathai (2005). This is the distributional pathway.
- Here α is called the pathway parameter

Introduction	Optimization ○○○●○	Bayesian oo	Fractional 00000	A Mathematical	Acknowledgment
· · · · ·					

If $f_1(x)$, $f_2(x)$ of (3.3)-(3.5) are taken as statistical densities then c_1 , c_2 , c_3 can act as the normalizing constants, which are available by integrating out in (3.3),(3.4) and (3.5) respectively.

$$c_{1} = \frac{\left[a(1-\alpha)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{\gamma+1}{\delta} + \frac{1}{1-\alpha} + 1)}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{1-\alpha} + 1)}, \alpha < 1, a > 0, \delta > 0, \gamma + 1 > 0 \quad (3.6)$$

$$c_{2} = \frac{\left[a(\alpha-1)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{1}{\alpha-1})}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{\alpha-1}-\frac{\gamma+1}{\delta})}, \alpha > 1$$
(3.7)

$$a>0,\delta>0,\gamma+1>0,rac{1}{lpha-1}-rac{\gamma+1}{\delta}>0$$
 and

$$c_3 = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})}, a > 0, \delta > 0, \gamma+1 > 0.$$
(3.8)

- The model in (3.3) for a general α is the scalar version of the pathway model of Mathai (2005). This is the distributional pathway.
- Here α is called the pathway parameter

Introduction	Optimization ○○○●○	Bayesian oo	Fractional	A Mathematical	Acknowledgment
· · · · ·					

If $f_1(x)$, $f_2(x)$ of (3.3)-(3.5) are taken as statistical densities then c_1 , c_2 , c_3 can act as the normalizing constants, which are available by integrating out in (3.3),(3.4) and (3.5) respectively.

$$c_{1} = \frac{\left[a(1-\alpha)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{\gamma+1}{\delta} + \frac{1}{1-\alpha} + 1)}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{1-\alpha} + 1)}, \alpha < 1, a > 0, \delta > 0, \gamma + 1 > 0 \quad (3.6)$$

$$c_{2} = \frac{\left[a(\alpha-1)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{1}{\alpha-1})}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{\alpha-1}-\frac{\gamma+1}{\delta})}, \alpha > 1$$
(3.7)

$$a>0,\delta>0,\gamma+1>0,rac{1}{lpha-1}-rac{\gamma+1}{\delta}>0$$
 and

$$c_3 = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})}, a > 0, \delta > 0, \gamma+1 > 0.$$
(3.8)

- The model in (3.3) for a general α is the scalar version of the pathway model of Mathai (2005). This is the distributional pathway.
- CMS

Here α is called the pathway parameter.

Introduction	Optimization ○○○●○	Bayesian oo	Fractional 00000	A Mathematical	Acknowledgment

If $f_1(x)$, $f_2(x)$ of (3.3)-(3.5) are taken as statistical densities then c_1 , c_2 , c_3 can act as the normalizing constants, which are available by integrating out in (3.3),(3.4) and (3.5) respectively.

$$c_{1} = \frac{\left[a(1-\alpha)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{\gamma+1}{\delta} + \frac{1}{1-\alpha} + 1)}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{1-\alpha} + 1)}, \alpha < 1, a > 0, \delta > 0, \gamma + 1 > 0 \quad (3.6)$$

$$c_{2} = \frac{\left[a(\alpha-1)\right]^{\frac{\gamma+1}{\delta}}}{2} \frac{\Gamma(\frac{1}{\alpha-1})}{\Gamma(\frac{\gamma+1}{\delta})\Gamma(\frac{1}{\alpha-1}-\frac{\gamma+1}{\delta})}, \alpha > 1$$
(3.7)

$$a>0,\delta>0,\gamma+1>0,rac{1}{lpha-1}-rac{\gamma+1}{\delta}>0$$
 and

$$c_3 = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})}, a > 0, \delta > 0, \gamma+1 > 0.$$

$$(3.8)$$

- The model in (3.3) for a general α is the scalar version of the pathway model of Mathai (2005). This is the distributional pathway.
- CMS

• Here α is called the pathway parameter.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
	00000				

- When $\alpha < 1$ then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When $\alpha > 1$ then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, $\gamma = 0$, $\delta = 1$, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of $\alpha < 1$, $\alpha > 1$, $\alpha \rightarrow 1$. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization ○○○○●	Bayesian 00	Fractional	A Mathematical	Acknowledgment

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When $\alpha > 1$ then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, $\gamma = 0$, $\delta = 1$, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of $\alpha < 1$, $\alpha > 1$, $\alpha \rightarrow 1$. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
<u> </u>					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, $\gamma = 0$, $\delta = 1$, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of $\alpha < 1$, $\alpha > 1$, $\alpha \rightarrow 1$. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
<u> </u>					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, $\gamma = 0$, $\delta = 1$, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of $\alpha < 1$, $\alpha > 1$, $\alpha \rightarrow 1$. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
A					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, $\gamma = 0$, $\delta = 1$, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of $\alpha < 1$, $\alpha > 1$, $\alpha \rightarrow 1$. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
A					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, γ = 0, δ = 1, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of α < 1, α > 1, α → 1. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
A					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, γ = 0, δ = 1, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of α < 1, α > 1, α → 1. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for $\alpha > 1, \delta = 1, a = 1, x > 0$ is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
<u> </u>					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, $\gamma = 0$, $\delta = 1$, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of $\alpha < 1$, $\alpha > 1$, $\alpha \rightarrow 1$. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for α > 1, δ = 1, a = 1, x > 0 is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case $\alpha > 1$ and $\alpha \to 1$ whereas Tsallis statistics covers all cases $\alpha < 1, \alpha > 1, \alpha \to 1$ but the main restriction here is that $\gamma = 0$ or the factor x^{γ} is absent in Tsallis model.

Introduction	Optimization 0000●	Bayesian 00	Fractional	A Mathematical	Acknowledgment
<u> </u>					

- When α < 1 then the model describes the whole family of functions belonging to extended generalized type-1 beta family.
- When α > 1 then we move into the whole family of functions belonging to the extended generalized type-2 beta family.
- When $\alpha \rightarrow 1$ then both these families go into the family of extended generalized gamma family.
- This is the differential pathway.
- Note that (3.3) for x > 0, γ = 0, δ = 1, a = 1 is Tsallis statistics of non-extensive statistical mechanics which works for all the cases of α < 1, α > 1, α → 1. This particular case of (3.3) is also the model in (1.2).
- Model (3.3) for α > 1, δ = 1, a = 1, x > 0 is what is known in the literature as superstatistics [Beck and Cohen (2003), Beck (2006)].
- Note that since superstatistics assumes the functional form in (3.4) for $\alpha > 1$, from superstatistics one cannot get (3.3) for $\alpha < 1$.
- In the family of pathway models, superstatistics is derived from the case α > 1 and α → 1 whereas Tsallis statistics covers all cases α < 1, α > 1, α → 1 but the main restriction here is that γ = 0 or the factor x^γ is absent in Tsallis model.
- In superstatistics x^γ is present but it covers only the type-2 beta (α > 1) and gamma (α → 1) families of functions and not type-1 beta (α < 1) families of functions.</p>

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
		•0			

The model in (3.5) for a prefixed parameter a can be written as a conditional density of the type

$$f_4(x|a) = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})} |x|^{\gamma} e^{-a|x|^{\delta}}, a > 0, -\infty < x < \infty.$$

$$(4.1)$$

Suppose that the parameter *a* has a prior density given by

$$g(a) = \frac{1}{\eta^{\epsilon} \Gamma(\epsilon)} a^{\epsilon-1} e^{-\frac{a}{\eta}}, a > 0, \eta > 0, \epsilon > 0$$
(4.2)

where ϵ and η are known constants.

Then the unconditional density of x is given by

$$\int_{a} f_{4}(x|a)g(a)da = \frac{|x|^{\gamma}}{2\eta^{\epsilon}\Gamma(\epsilon)\Gamma(\frac{\gamma+1}{\delta})} \int_{a=0}^{\infty} a^{\frac{\gamma+1}{\delta}+\epsilon-1} e^{-a(\frac{1}{\eta}+|x|^{\delta})} da$$
$$= \frac{|x|^{\gamma}\Gamma(\frac{\gamma+1}{\delta}+\epsilon)}{2\Gamma(\frac{\gamma+1}{\delta})\eta^{\epsilon}\Gamma(\epsilon)} [\frac{1}{\eta}+|x|^{\delta}]^{-(\frac{\gamma+1}{\delta}+\epsilon)}$$
$$= \frac{|x|^{\gamma}\Gamma(\frac{\gamma+1}{\delta}+\epsilon)\eta^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})\Gamma(\epsilon)} [1+\eta|x|^{\delta}]^{-(\frac{\gamma+1}{\delta}+\epsilon)}.$$
(4.3)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
		0			

The model in (3.5) for a prefixed parameter a can be written as a conditional density of the type

$$f_4(x|a) = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})} |x|^{\gamma} e^{-a|x|^{\delta}}, a > 0, -\infty < x < \infty.$$

$$(4.1)$$

Suppose that the parameter *a* has a prior density given by

$$g(a) = \frac{1}{\eta^{\epsilon} \Gamma(\epsilon)} a^{\epsilon-1} e^{-\frac{a}{\eta}}, a > 0, \eta > 0, \epsilon > 0$$
(4.2)

where ϵ and η are known constants.

Then the unconditional density of x is given by

$$\int_{a} f_{4}(x|a)g(a)da = \frac{|x|^{\gamma}}{2\eta^{\epsilon}\Gamma(\epsilon)\Gamma(\frac{\gamma+1}{\delta})} \int_{a=0}^{\infty} a^{\frac{\gamma+1}{\delta}+\epsilon-1} e^{-a(\frac{1}{\eta}+|x|^{\delta})} da$$
$$= \frac{|x|^{\gamma}\Gamma(\frac{\gamma+1}{\delta}+\epsilon)}{2\Gamma(\frac{\gamma+1}{\delta})\eta^{\epsilon}\Gamma(\epsilon)} [\frac{1}{\eta}+|x|^{\delta}]^{-(\frac{\gamma+1}{\delta}+\epsilon)}$$
$$= \frac{|x|^{\gamma}\Gamma(\frac{\gamma+1}{\delta}+\epsilon)\eta^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})\Gamma(\epsilon)} [1+\eta|x|^{\delta}]^{-(\frac{\gamma+1}{\delta}+\epsilon)}. \tag{4.3}$$

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
		•o			

The model in (3.5) for a prefixed parameter a can be written as a conditional density of the type

$$f_4(x|a) = \frac{a^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})} |x|^{\gamma} e^{-a|x|^{\delta}}, a > 0, -\infty < x < \infty.$$

$$(4.1)$$

Suppose that the parameter *a* has a prior density given by

$$g(a) = \frac{1}{\eta^{\epsilon} \Gamma(\epsilon)} a^{\epsilon-1} e^{-\frac{a}{\eta}}, a > 0, \eta > 0, \epsilon > 0$$
(4.2)

where ϵ and η are known constants.

■ Then the unconditional density of *x* is given by

$$\int_{a} f_{4}(x|a)g(a)da = \frac{|x|^{\gamma}}{2\eta^{\epsilon}\Gamma(\epsilon)\Gamma(\frac{\gamma+1}{\delta})} \int_{a=0}^{\infty} a^{\frac{\gamma+1}{\delta}+\epsilon-1} e^{-a(\frac{1}{\eta}+|x|^{\delta})} da$$
$$= \frac{|x|^{\gamma}\Gamma(\frac{\gamma+1}{\delta}+\epsilon)}{2\Gamma(\frac{\gamma+1}{\delta})\eta^{\epsilon}\Gamma(\epsilon)} [\frac{1}{\eta}+|x|^{\delta}]^{-(\frac{\gamma+1}{\delta}+\epsilon)}$$
$$= \frac{|x|^{\gamma}\Gamma(\frac{\gamma+1}{\delta}+\epsilon)\eta^{\frac{\gamma+1}{\delta}}}{2\Gamma(\frac{\gamma+1}{\delta})\Gamma(\epsilon)} [1+\eta|x|^{\delta}]^{-(\frac{\gamma+1}{\delta}+\epsilon)}. \tag{4.3}$$

Introduction	Optimization	Bayesian ○●	Fractional	A Mathematical	Acknowledgment				
Desist									

- Note that for the convergence of the integral $\frac{1}{n} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x|a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Davaai					

- Note that for the convergence of the integral $\frac{1}{\eta} + |\mathbf{x}|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for *x*|*a* and gamma type marginal density for *a*.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha 1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Bavesia	n Procedı	ıre			

- Note that for the convergence of the integral $\frac{1}{n} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Bavesia	n Procedı	ıre			

- Note that for the convergence of the integral $\frac{1}{n} + |x|^{\delta}$ must remain positive.
 - Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
 - When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
 - The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
 - Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
 - Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
 - In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
 - A more general family of unconditional densities is available from Mathai and Haubold (2007).
 - Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Bavesia	n Procedı	ıre			

- Note that for the convergence of the integral $\frac{1}{n} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Rayoni	an Droood				

- Note that for the convergence of the integral $\frac{1}{n} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Bavesia	n Procedı	ıre			

- Note that for the convergence of the integral $\frac{1}{\eta} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Bayesia	n Proced	ure			

- Note that for the convergence of the integral $\frac{1}{\eta} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).

Introduction	Optimization	Bayesian ○●	Fractional 00000	A Mathematical	Acknowledgment
Bayesia	n Proced	ure			

- Note that for the convergence of the integral $\frac{1}{\eta} + |x|^{\delta}$ must remain positive.
- Hence superstatistics can only produce type-2 beta family of functions when considering gamma type conditional density for x | a and gamma type marginal density for a.
- When η is of the form $b(\alpha 1), b > 0, \alpha > 1$ and $\frac{\gamma+1}{\delta} + \epsilon = \frac{1}{\alpha-1}$ then we have the pathway model for $\alpha > 1$.
- The unconditional density of x in (4.3), denoted by $f_x(x)$, can also be interpreted the following way: $f_4(x|a)$ is the density of x where a is a parameter.
- Then we are superimposing another density g(a) on the density $f_4(x|a)$ and then the resulting density $f_x(x)$ can be called superimposed statistics or superstatistics.
- Apparently when superstatistics was introduced they were unaware of Bayesian procedures in Probability/Statistics.
- In Bayesian procedure, superstatistics is the unconditional density of x when x and the parameter a, for which a prior density is assumed, both belong to gamma family of densities.
- A more general family of unconditional densities is available from Mathai and Haubold (2007).
- Dozens of papers are published on superstatistics and it is being hotly pursued in different disciplines.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

 Going back to our basic growth-decay problem where the rate of change is proportional to the population size, our basic differential equation, equation (1.1), is

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = -c f(t), c > 0 \Rightarrow f(t) - f_0 = -c \int f(t) \mathrm{d}t.$$
(5.1)

If the total integral is replaced by a fractional integral of the Riemann-Liouville type let us see what happens. The left sided Riemann-Liouville fractional integral operator is denoted by $_0D_x^{-\alpha} = _0I_x^{\alpha}$ and it is defined as

$${}_{0}D_{x}^{-\alpha}f = \frac{1}{\Gamma(\alpha)}\int_{0}^{x} (x-t)^{\alpha-1}f(t)\mathrm{d}t, \Re(\alpha) > 0.$$
(5.2)

Fractional integral can be given many interpretations in statistical literature as fraction of a total integral, as the density of residual variable u = x - y where x and y are independently distributed real positive random variables such that x - y > 0 etc [Mathai (2010), Seema Nair (2010)].

If the total integral in (5.1) is replaced by fractional integral of (5.2) then the equation becomes

$$f(x) - f_0 = -c({}_0D_x^{-\alpha}f)(x)$$

B) CMS

where f_0 is a constant.

ヘロン 不得 とくほう 不良 とう

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			•0000		

 Going back to our basic growth-decay problem where the rate of change is proportional to the population size, our basic differential equation, equation (1.1), is

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = -c f(t), c > 0 \Rightarrow f(t) - f_0 = -c \int f(t) \mathrm{d}t.$$
(5.1)

■ If the total integral is replaced by a fractional integral of the Riemann-Liouville type let us see what happens. The left sided Riemann-Liouville fractional integral operator is denoted by $_0D_x^{-\alpha} = _0I_x^{\alpha}$ and it is defined as

$${}_0D_x^{-\alpha}f = \frac{1}{\Gamma(\alpha)}\int_0^x (x-t)^{\alpha-1}f(t)\mathrm{d}t, \Re(\alpha) > 0.$$
(5.2)

Fractional integral can be given many interpretations in statistical literature as fraction of a total integral, as the density of residual variable u = x - y where x and y are independently distributed real positive random variables such that x - y > 0 etc [Mathai (2010), Seema Nair (2010)].

If the total integral in (5.1) is replaced by fractional integral of (5.2) then the equation becomes

$$f(x) - f_0 = -c({}_0D_x^{-\alpha}f)(x)$$

B) CMS

where f_0 is a constant.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			•0000		

 Going back to our basic growth-decay problem where the rate of change is proportional to the population size, our basic differential equation, equation (1.1), is

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = -c f(t), c > 0 \Rightarrow f(t) - f_0 = -c \int f(t) \mathrm{d}t.$$
(5.1)

■ If the total integral is replaced by a fractional integral of the Riemann-Liouville type let us see what happens. The left sided Riemann-Liouville fractional integral operator is denoted by $_0D_x^{-\alpha} = _0I_x^{\alpha}$ and it is defined as

$${}_{0}D_{x}^{-\alpha}f = \frac{1}{\Gamma(\alpha)}\int_{0}^{x} (x-t)^{\alpha-1}f(t)\mathrm{d}t, \Re(\alpha) > 0.$$
(5.2)

Fractional integral can be given many interpretations in statistical literature as fraction of a total integral, as the density of residual variable u = x - y where x and y are independently distributed real positive random variables such that x - y > 0 etc [Mathai (2010), Seema Nair (2010)].

If the total integral in (5.1) is replaced by fractional integral of (5.2) then the equation becomes

$$f(x) - f_0 = -c({}_0D_x^{-\alpha}f)(x)$$

イロト 不同 トイヨト イヨト

where f_0 is a constant.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			•0000		

 Going back to our basic growth-decay problem where the rate of change is proportional to the population size, our basic differential equation, equation (1.1), is

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) = -c f(t), c > 0 \Rightarrow f(t) - f_0 = -c \int f(t) \mathrm{d}t.$$
(5.1)

■ If the total integral is replaced by a fractional integral of the Riemann-Liouville type let us see what happens. The left sided Riemann-Liouville fractional integral operator is denoted by $_0D_x^{-\alpha} = _0I_x^{\alpha}$ and it is defined as

$${}_{0}D_{x}^{-\alpha}f = \frac{1}{\Gamma(\alpha)}\int_{0}^{x} (x-t)^{\alpha-1}f(t)\mathrm{d}t, \Re(\alpha) > 0.$$
(5.2)

Fractional integral can be given many interpretations in statistical literature as fraction of a total integral, as the density of residual variable u = x - y where x and y are independently distributed real positive random variables such that x - y > 0 etc [Mathai (2010), Seema Nair (2010)].

If the total integral in (5.1) is replaced by fractional integral of (5.2) then the equation becomes

$$f(x) - f_0 = -c({}_0D_x^{-\alpha}f)(x)$$

(5.3) **(5.3**)

where f_0 is a constant.
Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			0000		

• Let the Laplace parameter be s. Let the Laplace transform of f be denoted by $\tilde{f}(s)$.

Then

$$L_f(s) - f_0 \int_0^\infty \mathrm{e}^{-sx} \mathrm{d}x = -c \int_{x=0}^\infty \mathrm{e}^{-sx} [\frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) \mathrm{d}t] \mathrm{d}x.$$

Then

$$\tilde{f} - \frac{f_0}{s} = -s^{-\alpha}\tilde{f}(x) \Rightarrow \tilde{f} = \frac{f_0}{s[1+cs^{-\alpha}]}$$

$$= f_0 \sum_{k=0}^{\infty} (\frac{c}{s^{\alpha}})^k (-1)^k.$$
(5.4)

Taking the inverse Laplace transform we have

$$f(x) = f_0 \sum_{k=0}^{\infty} (-1)^k \frac{c^k x^{\alpha k}}{\Gamma(1+\alpha k)} = f_0 E_\alpha(-cx^\alpha)$$

where $E_{\alpha}(\cdot)$ is the basic Mittag-Leffler function.

イロト イポト イヨト イヨト

ъ

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- Let the Laplace parameter be s. Let the Laplace transform of f be denoted by $\tilde{f}(s)$.
- Then

$$L_f(s) - f_0 \int_0^\infty \mathrm{e}^{-sx} \mathrm{d}x = -c \int_{x=0}^\infty \mathrm{e}^{-sx} [\frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) \mathrm{d}t] \mathrm{d}x.$$

Then

$$\tilde{t} - \frac{f_0}{s} = -s^{-\alpha}\tilde{t}(x) \Rightarrow \tilde{t} = \frac{f_0}{s[1+cs^{-\alpha}]}$$

$$= f_0 \sum_{k=0}^{\infty} (\frac{c}{s^{\alpha}})^k (-1)^k.$$
(5.4)

Taking the inverse Laplace transform we have

$$f(x) = f_0 \sum_{k=0}^{\infty} (-1)^k \frac{c^k x^{\alpha k}}{\Gamma(1+\alpha k)} = f_0 E_\alpha(-cx^\alpha)$$

where $E_{\alpha}(\cdot)$ is the basic Mittag-Leffler function.

イロト イポト イヨト イヨト

(5.5)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

Generalization of the basic Mittag-Leffler function are the following:

$$E_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(1 + \alpha k)}, \Re(\alpha) > 0, \ E_{1}(x) = e^{x}$$
$$E_{\alpha,\beta}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(\beta + \alpha k)}, \Re(\alpha) > 0, \Re(\beta) > 0$$

$$E_{\alpha,\beta}^{\gamma}(x) = \sum_{k=0}^{\infty} \frac{(\gamma)_k}{k!} \frac{x^k}{\Gamma(\beta + \alpha k)}, \Re(\alpha) > 0, \Re(\beta) > 0$$
(5.6)

where $(\gamma)_k$ is the Pochhammer symbol

$$(\gamma)_k = \gamma(\gamma+1)...(\gamma+k-1), (\gamma)_0 = 1, \gamma \neq 0.$$

- More generalized form of (5.5) is the Wright's function, which is a special case of the H-function.
- More on the applications of these functions may be seen from Mathai and Haubold (2008), Mathai et al. (2010).

Introduction	Optimization 00000	Bayesian ೦೦	Fractional oo●oo	A Mathematical	Acknowledgment

Generalization of the basic Mittag-Leffler function are the following:

$$\begin{split} E_{\alpha}(x) &= \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(1+\alpha k)}, \Re(\alpha) > 0, \ E_{1}(x) = e^{x} \\ E_{\alpha,\beta}(x) &= \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(\beta+\alpha k)}, \Re(\alpha) > 0, \Re(\beta) > 0 \end{split}$$

$$E_{\alpha,\beta}^{\gamma}(x) = \sum_{k=0}^{\infty} \frac{(\gamma)_k}{k!} \frac{x^k}{\Gamma(\beta + \alpha k)}, \Re(\alpha) > 0, \Re(\beta) > 0$$
(5.6)

where $(\gamma)_k$ is the Pochhammer symbol

$$(\gamma)_k = \gamma(\gamma+1)...(\gamma+k-1), (\gamma)_0 = 1, \gamma \neq 0.$$

More generalized form of (5.5) is the Wright's function, which is a special case of the H-function.

More on the applications of these functions may be seen from Mathai and Haubold (2008), Mathai et al. (2010).

Introduction	Optimization 00000	Bayesian ೦೦	Fractional oo●oo	A Mathematical	Acknowledgment

Generalization of the basic Mittag-Leffler function are the following:

$$E_{\alpha}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(1+\alpha k)}, \Re(\alpha) > 0, \ E_{1}(x) = e^{x}$$
$$E_{\alpha,\beta}(x) = \sum_{k=0}^{\infty} \frac{x^{k}}{\Gamma(\beta+\alpha k)}, \Re(\alpha) > 0, \Re(\beta) > 0$$

$$E_{\alpha,\beta}^{\gamma}(x) = \sum_{k=0}^{\infty} \frac{(\gamma)_k}{k!} \frac{x^k}{\Gamma(\beta + \alpha k)}, \Re(\alpha) > 0, \Re(\beta) > 0$$
(5.6)

where $(\gamma)_k$ is the Pochhammer symbol

$$(\gamma)_k = \gamma(\gamma+1)...(\gamma+k-1), (\gamma)_0 = 1, \gamma \neq 0.$$

- More generalized form of (5.5) is the Wright's function, which is a special case of the H-function.
- More on the applications of these functions may be seen from Mathai and Haubold (2008), Mathai et al. (2010).

э

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- It is seen that when we move from a total differential equation to a fractional differential equation, Mittag-Leffler function and its generalizations, Wright function and H-function enter into the solutions.
- A series of recent papers are available on the solutions of fractional reaction equations and fractional reaction-diffusion equations.
- The Laplace transform in (5.4) belongs to a general class of Laplace transforms, see Mathai et al. (2006) and the various references therein, and various members from this general class appear when solving some fractional differential equations.
- Some of the papers may be seen from Haubold et al. (2011) and Saxena et al (2010).
- The effects of power transformations and exponentiation on various models can be seen from a recent paper Mathai (2012).

イロト 不同 トイヨト イヨト

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- It is seen that when we move from a total differential equation to a fractional differential equation, Mittag-Leffler function and its generalizations, Wright function and H-function enter into the solutions.
- A series of recent papers are available on the solutions of fractional reaction equations and fractional reaction-diffusion equations.
- The Laplace transform in (5.4) belongs to a general class of Laplace transforms, see Mathai et al. (2006) and the various references therein, and various members from this general class appear when solving some fractional differential equations.
- Some of the papers may be seen from Haubold et al. (2011) and Saxena et al (2010).
- The effects of power transformations and exponentiation on various models can be seen from a recent paper Mathai (2012).

イロト 不同 トイヨト イヨト

Introduction	Optimization	Bayesian oo	Fractional 000●0	A Mathematical	Acknowledgment

- It is seen that when we move from a total differential equation to a fractional differential equation, Mittag-Leffler function and its generalizations, Wright function and H-function enter into the solutions.
- A series of recent papers are available on the solutions of fractional reaction equations and fractional reaction-diffusion equations.
- The Laplace transform in (5.4) belongs to a general class of Laplace transforms, see Mathai et al. (2006) and the various references therein, and various members from this general class appear when solving some fractional differential equations.
- Some of the papers may be seen from Haubold et al. (2011) and Saxena et al (2010).
- The effects of power transformations and exponentiation on various models can be seen from a recent paper Mathai (2012).

Introduction	Optimization	Bayesian oo	Fractional 000●0	A Mathematical	Acknowledgment

- It is seen that when we move from a total differential equation to a fractional differential equation, Mittag-Leffler function and its generalizations, Wright function and H-function enter into the solutions.
- A series of recent papers are available on the solutions of fractional reaction equations and fractional reaction-diffusion equations.
- The Laplace transform in (5.4) belongs to a general class of Laplace transforms, see Mathai et al. (2006) and the various references therein, and various members from this general class appear when solving some fractional differential equations.
- Some of the papers may be seen from Haubold et al. (2011) and Saxena et al (2010).
- The effects of power transformations and exponentiation on various models can be seen from a recent paper Mathai (2012).

Introduction	Optimization	Bayesian oo	Fractional 000●0	A Mathematical	Acknowledgment

- It is seen that when we move from a total differential equation to a fractional differential equation, Mittag-Leffler function and its generalizations, Wright function and H-function enter into the solutions.
- A series of recent papers are available on the solutions of fractional reaction equations and fractional reaction-diffusion equations.
- The Laplace transform in (5.4) belongs to a general class of Laplace transforms, see Mathai et al. (2006) and the various references therein, and various members from this general class appear when solving some fractional differential equations.
- Some of the papers may be seen from Haubold et al. (2011) and Saxena et al (2010).
- The effects of power transformations and exponentiation on various models can be seen from a recent paper Mathai (2012).

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- Let us see what happens if a parameter is becoming larger and larger in a Mittag-Leffler model of (5.6).
- Suppose that β is real and it is becoming larger and larger.
- Then by using the asymptotic expansion of gamma functions or as a first approximation the Stirling's formula

 $\Gamma(z+a) \approx \sqrt{2\pi} z^{z+a-\frac{1}{2}} e^{-z}$ for $|z| \to \infty$, *a* is bounded

we see that

$$\Gamma(\beta)E_{\delta,\beta}^{\gamma}(a(\beta x)^{\delta}) \approx \sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k}x^{\delta k}}{k!} \frac{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}}e^{-\beta}}{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}+\delta k}e^{-\beta}}$$

$$=\sum_{k=0}^{\infty}\frac{a^k(\gamma)_k}{k!}((\frac{x}{\beta})^{\delta})^k = (1+ax^{\delta})^{-\gamma}.$$
(5.7)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- Let us see what happens if a parameter is becoming larger and larger in a Mittag-Leffler model of (5.6).
- Suppose that β is real and it is becoming larger and larger.
- Then by using the asymptotic expansion of gamma functions or as a first approximation the Stirling's formula

 $\Gamma(z+a) \approx \sqrt{2\pi} z^{z+a-\frac{1}{2}} e^{-z}$ for $|z| \to \infty$, *a* is bounded

we see that

$$\Gamma(\beta)E_{\delta,\beta}^{\gamma}(a(\beta x)^{\delta}) \approx \sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k} x^{\delta k}}{k!} \frac{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}} e^{-\beta}}{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}+\delta k} e^{-\beta}}$$

$$=\sum_{k=0}^{\infty}\frac{a^k(\gamma)_k}{k!}((\frac{x}{\beta})^{\delta})^k = (1+ax^{\delta})^{-\gamma}.$$
(5.7)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- Let us see what happens if a parameter is becoming larger and larger in a Mittag-Leffler model of (5.6).
- Suppose that β is real and it is becoming larger and larger.
- Then by using the asymptotic expansion of gamma functions or as a first approximation the Stirling's formula

$$\Gamma(z+a) \approx \sqrt{2\pi} z^{z+a-\frac{1}{2}} e^{-z}$$
 for $|z| \to \infty$, *a* is bounded

we see that

$$\Gamma(\beta)E_{\delta,\beta}^{\gamma}(a(\beta x)^{\delta}) \approx \sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k} x^{\delta k}}{k!} \frac{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}} e^{-\beta}}{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}+\delta k} e^{-\beta}}$$

$$=\sum_{k=0}^{\infty} \frac{a^k(\gamma)_k}{k!} \left(\left(\frac{x}{\beta}\right)^{\delta}\right)^k = (1+ax^{\delta})^{-\gamma}.$$
(5.7)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- Let us see what happens if a parameter is becoming larger and larger in a Mittag-Leffler model of (5.6).
- Suppose that β is real and it is becoming larger and larger.
- Then by using the asymptotic expansion of gamma functions or as a first approximation the Stirling's formula

 $\Gamma(z+a) \approx \sqrt{2\pi} z^{z+a-\frac{1}{2}} e^{-z}$ for $|z| \to \infty$, *a* is bounded

we see that

$$\Gamma(\beta)E_{\delta,\beta}^{\gamma}(a(\beta x)^{\delta}) \approx \sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k}x^{\delta k}}{k!} \frac{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}}e^{-\beta}}{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}+\delta k}e^{-\beta}}$$

$$=\sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k}}{k!} ((\frac{x}{\beta})^{\delta})^{k} = (1 + ax^{\delta})^{-\gamma}.$$
 (5.7)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
			00000		

- Let us see what happens if a parameter is becoming larger and larger in a Mittag-Leffler model of (5.6).
- Suppose that β is real and it is becoming larger and larger.
- Then by using the asymptotic expansion of gamma functions or as a first approximation the Stirling's formula

 $\Gamma(z+a) \approx \sqrt{2\pi} z^{z+a-\frac{1}{2}} e^{-z}$ for $|z| \to \infty$, *a* is bounded

we see that

$$\Gamma(\beta)E_{\delta,\beta}^{\gamma}(a(\beta x)^{\delta}) \approx \sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k}x^{\delta k}}{k!} \frac{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}}e^{-\beta}}{\sqrt{2\pi}\beta^{\beta-\frac{1}{2}+\delta k}e^{-\beta}}$$
$$= \sum_{k=0}^{\infty} \frac{a^{k}(\gamma)_{k}}{k!} \left(\left(\frac{x}{\beta}\right)^{\delta}\right)^{k} = (1+ax^{\delta})^{-\gamma}.$$
(5.7)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				•00	

- Mathematically speaking the whole process of transition from one functional form to another, Tsallis statistics, superstatistics and pathway models in the scalar case can be described as getting rid off some parameters from a hypergeometric series.
- Take for example a $_1F_1$ series:

$$_{1}F_{1}(a;b;x) = \sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{x^{k}}{k!}.$$
 (6.1)

If we wish to get rid off an upper or lower parameter then we do a limiting process.

$$\lim_{a \to \infty} {}_{1}F_{1}(a;b;\frac{x}{a}) = {}_{0}F_{1}(;b;x)$$

$$\lim_{b \to \infty} {}_{1}F_{1}(a;b;bx) = {}_{1}F_{0}(a;;x), |x| < 1$$

$$\lim_{a \to \infty} {}_{1}F_{0}(a;;\frac{x}{a}) = {}_{0}F_{0}(;x) = {}_{e}^{x}$$

$$\lim_{b \to \infty} {}_{0}F_{1}(;b;bx) = {}_{0}F_{0}(;x) = {}_{e}^{x}.$$
(6.2)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				•00	

- Mathematically speaking the whole process of transition from one functional form to another, Tsallis statistics, superstatistics and pathway models in the scalar case can be described as getting rid off some parameters from a hypergeometric series.
- Take for example a ₁ *F*₁ series:

$$_{1}F_{1}(a;b;x) = \sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{x^{k}}{k!}.$$
 (6.1)

If we wish to get rid off an upper or lower parameter then we do a limiting process.

$$\lim_{a \to \infty} {}_{1}F_{1}(a;b;\frac{x}{a}) = {}_{0}F_{1}(;b;x)$$

$$\lim_{b \to \infty} {}_{1}F_{1}(a;b;bx) = {}_{1}F_{0}(a;;x), |x| < 1$$

$$\lim_{a \to \infty} {}_{1}F_{0}(a;;\frac{x}{a}) = {}_{0}F_{0}(;x) = e^{x}$$

$$\lim_{b \to \infty} {}_{0}F_{1}(;b;bx) = {}_{0}F_{0}(;x) = e^{x}.$$
(6.2)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				•00	

- Mathematically speaking the whole process of transition from one functional form to another, Tsallis statistics, superstatistics and pathway models in the scalar case can be described as getting rid off some parameters from a hypergeometric series.
- Take for example a 1 F1 series:

$$_{1}F_{1}(a;b;x) = \sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{x^{k}}{k!}.$$
 (6.1)

If we wish to get rid off an upper or lower parameter then we do a limiting process.

$$\lim_{a \to \infty} {}_{1}F_{1}(a; b; \frac{x}{a}) = {}_{0}F_{1}(; b; x)$$

$$\lim_{b \to \infty} {}_{1}F_{1}(a; b; bx) = {}_{1}F_{0}(a; ; x), |x| < 1$$

$$\lim_{a \to \infty} {}_{1}F_{0}(a; ; \frac{x}{a}) = {}_{0}F_{0}(; ; x) = {}_{0}^{x}$$

$$\lim_{b \to \infty} {}_{0}F_{1}(; b; bx) = {}_{0}F_{0}(; ; x) = {}_{0}^{x}.$$
(6.2)

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				•00	

- Mathematically speaking the whole process of transition from one functional form to another, Tsallis statistics, superstatistics and pathway models in the scalar case can be described as getting rid off some parameters from a hypergeometric series.
- Take for example a 1 F1 series:

$$_{1}F_{1}(a;b;x) = \sum_{k=0}^{\infty} \frac{(a)_{k}}{(b)_{k}} \frac{x^{k}}{k!}.$$
 (6.1)

If we wish to get rid off an upper or lower parameter then we do a limiting process.

$$\lim_{a \to \infty} {}_{1}F_{1}(a;b;\frac{x}{a}) = {}_{0}F_{1}(;b;x)$$

$$\lim_{b \to \infty} {}_{1}F_{1}(a;b;bx) = {}_{1}F_{0}(a;;x), |x| < 1$$

$$\lim_{a \to \infty} {}_{1}F_{0}(a;;\frac{x}{a}) = {}_{0}F_{0}(;x) = e^{x}$$

$$\lim_{b \to \infty} {}_{0}F_{1}(;b;bx) = {}_{0}F_{0}(;x) = e^{x}.$$
(6.2)

(4回) (日) (日)

Introduction	Optimization	Bayesian oo	Fractional 00000	A Mathematical ○●○	Acknowledgment

All the above limiting forms are available by using the fact that

$$\lim_{a\to\infty}\frac{(a)_k}{a^k}=1=\lim_{a\to\infty}\frac{a^k}{(a)_k}.$$
(6.4)

- All these ideas are extended to the matrix-variate cases, to real positive definite, hermitian positive definite and to rectangular matrices, see the basic paper Mathai (2005), and later papers by the author and his co-workers are also available.
- One such model is the following:

$$f(X) = c |A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\gamma}|I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}}$$
(6.4)

where X is a $p \times r$, $r \ge p$ matrix of full rank p of distinct real random or mathematical variables, A is a $p \times p$ constant positive definite matrix, B is a $r \times r$ constant positive definite matrix, X' denotes the transpose of X, $A^{\frac{1}{2}}$ denotes the positive definite square root of the positive definite matrix A, f(X) is a real-valued scalar function of X and c is a constant.

This c can act as a normalizing constant if f(X) is treated as a statistical density

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

All the above limiting forms are available by using the fact that

$$\lim_{a\to\infty}\frac{(a)_k}{a^k}=1=\lim_{a\to\infty}\frac{a^k}{(a)_k}.$$
(6.4)

- All these ideas are extended to the matrix-variate cases, to real positive definite, hermitian positive definite and to rectangular matrices, see the basic paper Mathai (2005), and later papers by the author and his co-workers are also available.
- One such model is the following:

$$f(X) = c |A^{\frac{1}{2}} XBX' A^{\frac{1}{2}}|^{\gamma} |I - a(1 - \alpha)A^{\frac{1}{2}} XBX' A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}}$$
(6.4)

where X is a $p \times r$, $r \ge p$ matrix of full rank p of distinct real random or mathematical variables, A is a $p \times p$ constant positive definite matrix, B is a $r \times r$ constant positive definite matrix, X' denotes the transpose of X, $A^{\frac{1}{2}}$ denotes the positive definite square root of the positive definite matrix A, f(X) is a real-valued scalar function of X and c is a constant.

This c can act as a normalizing constant if f(X) is treated as a statistical density

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

All the above limiting forms are available by using the fact that

$$\lim_{a\to\infty}\frac{(a)_k}{a^k}=1=\lim_{a\to\infty}\frac{a^k}{(a)_k}.$$
(6.4)

- All these ideas are extended to the matrix-variate cases, to real positive definite, hermitian positive definite and to rectangular matrices, see the basic paper Mathai (2005), and later papers by the author and his co-workers are also available.
- One such model is the following:

$$f(X) = c |A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\gamma}|I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}}$$
(6.4)

where X is a $p \times r$, $r \ge p$ matrix of full rank p of distinct real random or mathematical variables, A is a $p \times p$ constant positive definite matrix, B is a $r \times r$ constant positive definite matrix, X' denotes the transpose of X, $A^{\frac{1}{2}}$ denotes the positive definite square root of the positive definite matrix A, f(X) is a real-valued scalar function of X and c is a constant.

This c can act as a normalizing constant if f(X) is treated as a statistical density

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

All the above limiting forms are available by using the fact that

$$\lim_{a\to\infty}\frac{(a)_k}{a^k}=1=\lim_{a\to\infty}\frac{a^k}{(a)_k}.$$
(6.4)

- All these ideas are extended to the matrix-variate cases, to real positive definite, hermitian positive definite and to rectangular matrices, see the basic paper Mathai (2005), and later papers by the author and his co-workers are also available.
- One such model is the following:

$$f(X) = c |A^{\frac{1}{2}} X B X' A^{\frac{1}{2}}|^{\gamma} |I - a(1 - \alpha) A^{\frac{1}{2}} X B X' A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}}$$
(6.4)

where X is a p × r, r ≥ p matrix of full rank p of distinct real random or mathematical variables, A is a p × p constant positive definite matrix, B is a r × r constant positive definite matrix, X' denotes the transpose of X, A^{1/2}/2 denotes the positive definite square root of the positive definite matrix A, f(X) is a real-valued scalar function of X and c is a constant.

This c can act as a normalizing constant if f(X) is treated as a statistical density

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

All the above limiting forms are available by using the fact that

$$\lim_{a\to\infty}\frac{(a)_k}{a^k}=1=\lim_{a\to\infty}\frac{a^k}{(a)_k}.$$
(6.4)

- All these ideas are extended to the matrix-variate cases, to real positive definite, hermitian positive definite and to rectangular matrices, see the basic paper Mathai (2005), and later papers by the author and his co-workers are also available.
- One such model is the following:

$$f(X) = c |A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\gamma}|I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}}$$
(6.4)

where X is a p × r, r ≥ p matrix of full rank p of distinct real random or mathematical variables, A is a p × p constant positive definite matrix, B is a r × r constant positive definite matrix, X' denotes the transpose of X, A^{1/2}/2 denotes the positive definite square root of the positive definite matrix A, f(X) is a real-valued scalar function of X and c is a constant.

This c can act as a normalizing constant if f(X) is treated as a statistical density.
 If the matrix X is relocated at some other matrix M then replace X by X - M in the model.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

All the above limiting forms are available by using the fact that

$$\lim_{a\to\infty}\frac{(a)_k}{a^k}=1=\lim_{a\to\infty}\frac{a^k}{(a)_k}.$$
(6.4)

- All these ideas are extended to the matrix-variate cases, to real positive definite, hermitian positive definite and to rectangular matrices, see the basic paper Mathai (2005), and later papers by the author and his co-workers are also available.
- One such model is the following:

$$f(X) = c |A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\gamma}|I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}}$$
(6.4)

where X is a p × r, r ≥ p matrix of full rank p of distinct real random or mathematical variables, A is a p × p constant positive definite matrix, B is a r × r constant positive definite matrix, X' denotes the transpose of X, A^{1/2}/2 denotes the positive definite square root of the positive definite matrix A, f(X) is a real-valued scalar function of X and c is a constant.

This c can act as a normalizing constant if f(X) is treated as a statistical density.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For $\alpha > 1$ the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

$$\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$$

- It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .
- A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For $\alpha > 1$ the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

$$\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$$

- It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .
- A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For $\alpha > 1$ the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

$$\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$$

- It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .
- A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For α > 1 the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

 $\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$

where $tr(\cdot)$ denotes the trace of (\cdot) .

It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .

A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For $\alpha > 1$ the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

$$\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$$

- It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .
- A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For $\alpha > 1$ the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

 $\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$

where $tr(\cdot)$ denotes the trace of (\cdot) .

It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .

A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian	Fractional	A Mathematical	Acknowledgment
				000	

- The constants $\eta > 0$, a > 0 and α are real scalars where α is the pathway parameter.
- For $\alpha < 1$ the model in (6.4) will stay in the generalized real matrix-variate type-1 beta family of functions.
- For α > 1 the model in (6.4) will go to the generalized real matrix-variate type-2 beta family of functions.
- When $\alpha \rightarrow 1$ both these type-1 beta and type-2 beta families will go to a generalized matrix-variate gamma family of functions.
- This can be seen by using the result

$$\lim_{\alpha \to 1} |I - a(1 - \alpha)A^{\frac{1}{2}}XBX'A^{\frac{1}{2}}|^{\frac{\eta}{1 - \alpha}} = \exp\{-a\eta \operatorname{tr}(A^{\frac{1}{2}}XBX'A^{\frac{1}{2}})\}$$

- It can be seen that all the real matrix-variate densities that are used in the current literature are available from the model (6.4) for various values of the pathway parameter α .
- A similar rich family is there if we consider the transition from a Bessel form to the exponential form. Model, corresponding to the one in (6.4), is available when the variables are in the complex domain also.

Introduction	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Acknow	vledaeme	nt			

The authors would like to thank the Department of Science and Technology, Government of India for the financial assistance for this work under project No: SR/S4/MS:287/05 and the Centre for Mathematical Sciences, India, for providing all facilities.

Introduction	Optimization	Bayesian 00	Fractional 00000	A Mathematical	Acknowledgment
Referer	nces				

Beck, C. (2006): Stretched exponentials from superstatistics, *Physica A*, **365**, 96-101.

- Beck, C. and Cohen, E.G.D. (2003): Superstatistics, Physica A, 322, 267-275.
- Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2011): Further solutions of fractional reaction-diffusion equations in terms of the H-function, *Journal of Computational and Applied Mathematics*, **235**, 1311-1316.

Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University Press, Oxford.

Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, **396**, 317-328.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, *Fractional Calculus & Applied Analysis*, **13(1)**, 113-132.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つく⊙

Introduction	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Referer	nces				

Beck, C. and Cohen, E.G.D. (2003): Superstatistics, Physica A, 322, 267-275.

Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2011): Further solutions of fractional reaction-diffusion equations in terms of the H-function, *Journal of Computational and Applied Mathematics*, **235**, 1311-1316.

Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University Press, Oxford.

Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, **396**, 317-328.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, *Fractional Calculus & Applied Analysis*, **13(1)**, 113-132.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Refere	nces				

- Beck, C. (2006): Stretched exponentials from superstatistics, *Physica A*, **365**, 96-101.
 - Beck, C. and Cohen, E.G.D. (2003): Superstatistics, Physica A, 322, 267-275.
- Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2011): Further solutions of fractional reaction-diffusion equations in terms of the H-function, *Journal of Computational and Applied Mathematics*, **235**, 1311-1316.

Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University Press, Oxford.

Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, **396**, 317-328.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, *Fractional Calculus & Applied Analysis*, **13(1)**, 113-132.

イロン 不得 とくほ とくほ とうほ
Introduction	Optimization	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Refere	nces				

- Beck, C. (2006): Stretched exponentials from superstatistics, *Physica A*, **365**, 96-101.
 - Beck, C. and Cohen, E.G.D. (2003): Superstatistics, Physica A, 322, 267-275.
- Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2011): Further solutions of fractional reaction-diffusion equations in terms of the H-function, *Journal of Computational and Applied Mathematics*, **235**, 1311-1316.
 - Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University Press, Oxford.
- Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, **396**, 317-328.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, *Fractional Calculus & Applied Analysis*, **13(1)**, 113-132.

3

イロト 不得 とくほ とくほとう

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment	
References						

- Beck, C. (2006): Stretched exponentials from superstatistics, *Physica A*, **365**, 96-101.
- Beck, C. and Cohen, E.G.D. (2003): Superstatistics, *Physica A*, **322**, 267-275.
- Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2011): Further solutions of fractional reaction-diffusion equations in terms of the H-function, *Journal of Computational and Applied Mathematics*, **235**, 1311-1316.
- Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University Press, Oxford.

Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, **396**, 317-328.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, *Fractional Calculus & Applied Analysis*, **13(1)**, 113-132.

-

イロト 不得 とくほと くほとう

Introduction	Optimization	Bayesian ೦೦	Fractional	A Mathematical	Acknowledgment
Refere	nces				

- Beck, C. (2006): Stretched exponentials from superstatistics, *Physica A*, **365**, 96-101.
- Beck, C. and Cohen, E.G.D. (2003): Superstatistics, *Physica A*, **322**, 267-275.
- Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2011): Further solutions of fractional reaction-diffusion equations in terms of the H-function, *Journal of Computational and Applied Mathematics*, **235**, 1311-1316.
- Mathai, A.M. (1993): A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University Press, Oxford.
- Mathai, A.M. (2005): A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, **396**, 317-328.

Mathai, A.M. (2010): Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, *Fractional Calculus & Applied Analysis*, **13(1)**, 113-132.

-

イロン 不得 とくほ とくほ とう

Introduction	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Referer	nces				

Mathai, A.M. (2012): Statistical models under power transformations and exponentiation, <i>Journal of the Society for Probability and Statistics</i> , 13 , 1-19.	
Mathai, A.M. and Rathie, P.N. (1975): <i>Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications</i> , Wiley Eastern New Delhi and Wiley Halsted New York.	
9	

ъ

メロト メポト メヨト メヨト

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment	
References						

Mathai, A.M. (2012): Statistical models under power transformations and exponentiation, <i>Journal of the Society for Probability and Statistics</i> , 13 , 1-19.
Mathai, A.M. and Haubold, H.J. (2007): Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, <i>Physica A</i> , 375 , 110-122.
Mathai, A.M. and Rathie, P.N. (1975): <i>Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications</i> , Wiley Eastern New Delhi and Wiley Halsted New York.

æ

メロト メポト メヨト メヨト

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment	
References						

Mathai, A.M. (2012): Statistical models under power transformations and exponentiation, <i>Journal of the Society for Probability and Statistics</i> , 13 , 1-19.	
Mathai, A.M. and Haubold, H.J. (2007): Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, <i>Physica A</i> , 375 , 110-122.	
Mathai, A.M. and Haubold, H.J. (1988): <i>Modern Problems in Nuclear and Neutrino Astrophysics</i> , Akademie-Verlag, Berlin.	
	Contraction

イロト イポト イヨト イヨト

CMS

æ

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Refere	nces				

- Mathai, A.M. (2012): Statistical models under power transformations and exponentiation, *Journal of the Society for Probability and Statistics*, **13**, 1-19.
- Mathai, A.M. and Haubold, H.J. (2007): Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, *Physica A*, **375**, 110-122.
 - Mathai, A.M. and Haubold, H.J. (1988): *Modern Problems in Nuclear and Neutrino Astrophysics*, Akademie-Verlag, Berlin.
 - Mathai, A.M. and Haubold, H.J. (2008): *Special Functions for Applied Scientists*, Springer, New York.

Mathai, A.M. and Pederzoli, G. (1977): *Characterizations of the Normal Probability Law*, Wiley Eastern New Delhi and Wiley Halsted New York.

Mathai, A.M. and Rathie, P.N. (1975): *Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications*, Wiley Eastern New Delhi and Wiley Halsted New York.

ヘロン 不良 とくほう 不良 とう

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
References					

Mathai, A.M. (2012): Statistical models under power transformations and exponentiation, Journal of the Society for Probability and Statistics, 13, 1-19. Mathai, A.M. and Haubold, H.J. (2007): Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, Physica A, 375, 110-122. Mathai, A.M. and Haubold, H.J. (1988): Modern Problems in Nuclear and Neutrino Astrophysics, Akademie-Verlag, Berlin. Mathai, A.M. and Haubold, H.J. (2008): Special Functions for Applied Scientists, Springer, New York. Mathai, A.M. and Pederzoli, G. (1977): Characterizations of the Normal Probability Law, Wiley Eastern New Delhi and Wiley Halsted New York.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Refere	nces				

Mathai, A.M. (2012): Statistical models under power transformations and exponentiation, Journal of the Society for Probability and Statistics, 13, 1-19. Mathai, A.M. and Haubold, H.J. (2007): Pathway model, superstatistics, Tsallis statistics and a generalized measure of entropy, Physica A, 375, 110-122. Mathai, A.M. and Haubold, H.J. (1988): Modern Problems in Nuclear and Neutrino Astrophysics, Akademie-Verlag, Berlin. Mathai, A.M. and Haubold, H.J. (2008): Special Functions for Applied Scientists, Springer, New York. Mathai, A.M. and Pederzoli, G. (1977): Characterizations of the Normal Probability Law, Wiley Eastern New Delhi and Wiley Halsted New York. Mathai, A.M. and Rathie, P.N. (1975): Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications, Wiley Eastern New Delhi and Wiley Halsted New York.

イロト 不得 トイヨト イヨト

Introduction	Optimization	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Referer	nces				

Mathai, A.M. and Saxena, R.K. (1978): The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern New Delhi and Wiley Halsted New York.

Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2006): A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations, *Astrophysics and Space Science*, **305**, 283-288.

Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2010): *The H-function: Theory and Applications*, Springer, New York.

Saxena, R.K. Mathai, A.M. and Haubold, H.J. (2010): Solutions of he fractional reaction equation and the fractional diffusion equation, *Astrophysics and Space Science Proceedings 2010*, pp. 53-62.

Tsallis, C. (1988): Possible generalizations of Boltzmann-Gibbs statistics, *J. Statistical Physics*, **52**, 479-487.

ъ

ヘロン 人間 とくほ とくほ とう

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Refere	nces				

Mathai, A.M. and Saxena, R.K. (1978): <i>The H-function with Applications in Statistics and Other Disciplines</i> , Wiley Eastern New Delhi and Wiley Halsted New York.
Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2006): A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations, <i>Astrophysics and Space Science</i> , 305 , 283-288.

æ

イロン イロン イヨン イヨン

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Refere	nces				

- Mathai, A.M. and Saxena, R.K. (1978): The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern New Delhi and Wiley Halsted New York.
- Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2006): A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations, *Astrophysics and Space Science*, **305**, 283-288.
 - Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2010): *The H-function: Theory and Applications*, Springer, New York.
 - Saxena, R.K. Mathai, A.M. and Haubold, H.J. (2010): Solutions of he fractional reaction equation and the fractional diffusion equation, *Astrophysics and Space Science Proceedings 2010*, pp. 53-62.
 - Tsallis, C. (1988): Possible generalizations of Boltzmann-Gibbs statistics, *J. Statistical Physics*, **52**, 479-487.

э

くロン くぼう くほう くほう

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Refere	nces				

- Mathai, A.M. and Saxena, R.K. (1978): The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern New Delhi and Wiley Halsted New York.
- Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2006): A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations, *Astrophysics and Space Science*, **305**, 283-288.
- Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2010): *The H-function: Theory and Applications*, Springer, New York.

Saxena, R.K. Mathai, A.M. and Haubold, H.J. (2010): Solutions of he fractional reaction equation and the fractional diffusion equation, *Astrophysics and Space Science Proceedings 2010*, pp. 53-62.

Tsallis, C. (1988): Possible generalizations of Boltzmann-Gibbs statistics, *J. Statistical Physics*, **52**, 479-487.

э

Introduction	Optimization 00000	Bayesian 00	Fractional	A Mathematical	Acknowledgment
Roforo	ncas				

- Mathai, A.M. and Saxena, R.K. (1978): *The H-function with Applications in Statistics and Other Disciplines*, Wiley Eastern New Delhi and Wiley Halsted New York.
- Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2006): A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations, *Astrophysics and Space Science*, **305**, 283-288.
- Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2010): *The H-function: Theory and Applications*, Springer, New York.
- Saxena, R.K. Mathai, A.M. and Haubold, H.J. (2010): Solutions of he fractional reaction equation and the fractional diffusion equation, *Astrophysics and Space Science Proceedings 2010*, pp. 53-62.
- Tsallis, C. (1988): Possible generalizations of Boltzmann-Gibbs statistics, *J. Statistical Physics*, **52**, 479-487.

Introduction

Optimization ...

Bayesian ...

Fractional ...

A Mathematical ...

イロト 不同 とくほ とくほ とう

Acknowledgment

Thank you for your attention !

ъ